Bounds on spectral condition numbers of matrices arising in the $p$-version of the finite element method

Summary. We estimate condition numbers of $p$-version matrices for tensor product elements with two choices of reference element degrees of freedom. In one case (Lagrange elements) the condition numbers grow exponentially in $p$, whereas in the other (hierarchical basis functions based on Tchebycheff polynomials) the condition numbers grow rapidly but only algebraically in $p$. We conjecture that regardless of the choice of basis the condition numbers grow like $p^{4d}$ or faster, where $d$ is the dimension of the spatial domain.

[1]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[2]  Kenneth Eriksson Some error estimates for the p -version of the finite element method , 1986 .

[3]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[4]  Solomon G. Mikhlin,et al.  The numerical performance of variational methods , 1971 .

[5]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[6]  Richard H. Gallagher,et al.  Concepts and applications of finite element analysis, 2nd edn, by Robert D. Cook, Wiley, New York, 1981. No. of Pages: 531. ISBN 0-471-03050-3. Price: £22.35 ($40·20) , 1981 .

[7]  Alberto Peano,et al.  Hierarchies of conforming finite elements for plane elasticity and plate bending , 1976 .

[8]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[9]  Ivo Babuška,et al.  Error estimates for the combinedh andp versions of the finite element method , 1981 .

[10]  E. Hille,et al.  On some generalizations of a theorem of A. Markoff , 1937 .

[11]  Jan Mandel,et al.  Two-level domain decomposition preconditioning for the p-version finite element method in three dimensions , 1990 .

[12]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[13]  I. Katz,et al.  Nodal variables for complete conforming finite elements of arbitrary polynomial order , 1978 .

[14]  Milo R. Dorr,et al.  The Approximation Theory for the p-Version of the Finite Element Method , 1984 .

[15]  I. Katz,et al.  Hierarchal finite elements and precomputed arrays , 1978 .

[16]  Ivo Babuška,et al.  The Problem of Selecting the Shape Functions for a p-Type Finite Element , 1989 .

[17]  Jan Mandel,et al.  Iterative solvers by substructuring for the p -version finite element method , 1990 .

[18]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[19]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[20]  M. Dorr The approximation of solutions of elliptic boundary-value problems via the p -version of the finite element method , 1986 .

[21]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[22]  I. Norman Katz,et al.  The p-Version of the Finite Element Method for Problems Requiring $C^1$-Continuity , 1985 .