Results on mining NHANES data: A case study in evidence-based medicine

[1]  B. Solomons Hysterectomy for rheumatoid arthritis , 1938 .

[2]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[3]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[4]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[5]  D. Swanson Medical literature as a potential source of new knowledge. , 1990, Bulletin of the Medical Library Association.

[6]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[7]  D. Sackett,et al.  Evidence based medicine: what it is and what it isn't , 1996, BMJ.

[8]  J. Fox Applied Regression Analysis, Linear Models, and Related Methods , 1997 .

[9]  Susan T. Dumais,et al.  Using Latent Semantic Indexing for Literature Based Discovery , 1998, J. Am. Soc. Inf. Sci..

[10]  R Peto,et al.  Trials: the next 50 years , 1998, BMJ.

[11]  Wynne Hsu,et al.  Mining association rules with multiple minimum supports , 1999, KDD '99.

[12]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[13]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[14]  J R Beck,et al.  Predictive model for survival at the conclusion of a damage control laparotomy. , 2000, American journal of surgery.

[15]  Thomas Reinartz,et al.  CRISP-DM 1.0: Step-by-step data mining guide , 2000 .

[16]  K.J. Cios,et al.  From the guest editor medical data mining and knowledge discovery , 2000, IEEE Engineering in Medicine and Biology Magazine.

[17]  Luis G. Vargas,et al.  Surgeon and Type of Anesthesia Predict Variability in Surgical Procedure Times , 2000, Anesthesiology.

[18]  Ian Witten,et al.  Data Mining , 2000 .

[19]  Mark A. Hall,et al.  Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning , 1999, ICML.

[20]  K. Cios Medical data mining and knowledge discovery. , 2000, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[21]  D C Torney,et al.  Discovery of association rules in medical data , 2001, Medical informatics and the Internet in medicine.

[22]  Nicos Maglaveras,et al.  Mining Association Rules from Clinical Databases: An Intelligent Diagnostic Process in Healthcare , 2001, MedInfo.

[23]  K. Wisborg,et al.  Smoking during pregnancy and infantile colic. , 2001, Pediatrics.

[24]  Attila Tárnok,et al.  Preoperative prediction of pediatric patients with effusions and edema following cardiopulmonary bypass surgery by serological and routine laboratory data , 2002, Critical care.

[25]  Benjamin C. M. Fung,et al.  Hierarchical Document Clustering using Frequent Itemsets , 2003, SDM.

[26]  Ioannis N. Kouris,et al.  An Improved Algorithm for Mining Association Rules Using Multiple Support Values , 2003, FLAIRS Conference.

[27]  J. Pell,et al.  Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials , 2003, BMJ : British Medical Journal.

[28]  Geoff Holmes,et al.  Benchmarking Attribute Selection Techniques for Discrete Class Data Mining , 2003, IEEE Trans. Knowl. Data Eng..

[29]  Chad Creighton,et al.  Mining gene expression databases for association rules , 2003, Bioinform..

[30]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[31]  Padmini Srinivasan,et al.  Text mining: Generating hypotheses from MEDLINE , 2004, J. Assoc. Inf. Sci. Technol..

[32]  A. Grímaldi,et al.  Anemia and Diabetes , 2004, American Journal of Nephrology.

[33]  Anne M Berger,et al.  Data Mining as a Tool for Research and Knowledge Development in Nursing , 2004, Computers, informatics, nursing : CIN.

[34]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[35]  Dimitrios G Goulis,et al.  The use of Data Mining in the categorization of patients with Azoospermia. , 2005, Hormones.

[36]  William M. Pottenger,et al.  Recent Advances in Literature Based Discovery , 2005 .

[37]  P. Shekelle,et al.  Meta-Analysis: Surgical Treatment of Obesity , 2005, Annals of Internal Medicine.

[38]  Barend Mons,et al.  Online tools to support literature-based discovery in the life sciences , 2005, Briefings Bioinform..

[39]  Christophe Giraud-Carrier,et al.  Dependency Mining on the 2005-06 National Health and Nutrition Examination Survey Data , 2005 .

[40]  Paul J. Ambrose,et al.  Neo-tribes: the power and potential of online communities in health care , 2006, CACM.

[41]  Andrew Kusiak,et al.  Hypoplastic left heart syndrome: knowledge discovery with a data mining approach , 2006, Comput. Biol. Medicine.

[42]  Wanda Pratt,et al.  Using statistical and knowledge-based approaches for literature-based discovery , 2006, J. Biomed. Informatics.

[43]  Hiroshi Oyama,et al.  A technique for identifying three diagnostic findings using association analysis , 2006, Medical & Biological Engineering & Computing.

[44]  S. Kotsiantis Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[45]  Vincent J. Carey,et al.  Supervised Machine Learning , 2008 .

[46]  M. McDowell,et al.  Blood folate levels: the latest NHANES results. , 2008, NCHS data brief.

[47]  James H Harrison,et al.  Introduction to the mining of clinical data. , 2008, Clinics in laboratory medicine.

[48]  S. Ventura Changing patterns of nonmarital childbearing in the United States. , 2009, NCHS data brief.

[49]  D. Lazer,et al.  Using reality mining to improve public health and medicine. , 2009, Studies in health technology and informatics.

[50]  Vasudha Bhatnagar,et al.  Algorithms for Association Rule Mining , 2009, Encyclopedia of Artificial Intelligence.

[51]  M. Kilby,et al.  Hypoplastic left heart syndrome , 2009, The Lancet.

[52]  I. Liu,et al.  Sleep apnea in early and advanced chronic kidney disease: Kaiser Permanente Southern California cohort. , 2009, Chest.

[53]  J. Marc Overhage,et al.  AMIA Board White Paper: Core Content for the Subspecialty of Clinical Informatics , 2009, J. Am. Medical Informatics Assoc..

[54]  R. Hirsch,et al.  Smoking, alcohol use, and illicit drug use reported by adolescents aged 12-17 years: United States, 1999-2004. , 2009, National health statistics reports.

[55]  R Bethene Ervin,et al.  Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. , 2009, National health statistics reports.

[56]  P. Krishna Reddy,et al.  An improved multiple minimum support based approach to mine rare association rules , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[57]  R. Hirsch,et al.  One-third of U.S adults embraced most heart healthy behaviors in 1999-2002. , 2009, NCHS data brief.

[58]  Jeffrey Heer,et al.  A tour through the visualization zoo , 2010, Commun. ACM.

[59]  Jian Pei,et al.  Exploring Disease Association from the NHANES Data: Data Mining, Pattern Summarization, and Visual Analytics , 2010, Int. J. Data Warehous. Min..

[60]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[61]  D. Estrin,et al.  Open mHealth Architecture: An Engine for Health Care Innovation , 2010, Science.

[62]  Weiss,et al.  Text Mining , 2010 .

[63]  J Marc Overhage,et al.  Informatics Core Content for the Subspecialty of Clinical , 2010 .

[64]  Siddhartha R. Dalal,et al.  Using information mining of the medical literature to improve drug safety , 2011, J. Am. Medical Informatics Assoc..

[65]  End Semester Msp Data warehousing & Mining , 2012 .

[66]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[67]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .