A Perceptually Inspired Variational Framework for Color Enhancement

Basic phenomenology of human color vision has been widely taken as an inspiration to devise explicit color correction algorithms. The behavior of these models in terms of significative image features (such as, e.g., contrast and dispersion) can be difficult to characterize. To cope with this, we propose to use a variational formulation of color contrast enhancement that is inspired by the basic phenomenology of color perception. In particular, we devise a set of basic requirements to be fulfilled by an energy to be considered as 'perceptually inspired', showing that there is an explicit class of functionals satisfying all of them. We single out three explicit functionals that we consider of basic interest, showing similarities and differences with existing models. The minima of such functionals is computed using a gradient descent approach. We also present a general methodology to reduce the computational cost of the algorithms under analysis from O(N2) to O(N logN), being N the number of pixels of the input image.

[1]  S. Zeki,et al.  Three cortical stages of colour processing in the human brain. , 1998, Brain : a journal of neurology.

[2]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[3]  Marcelo Bertalmío,et al.  Reconstrucción tridimensional de neuronas, una experiencia de cooperación interdisciplinaria , 1996 .

[4]  Carlo Gatta,et al.  A new algorithm for unsupervised global and local color correction , 2003, Pattern Recognit. Lett..

[5]  Marcelo Bertalmío,et al.  Real-time, accurate depth of field using anisotropic diffusion and programmable graphics cards , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[6]  Sophie M. Wuerger,et al.  'Color Vision: From Genes to Perception' , 2000 .

[7]  Alessandro Rizzi,et al.  Mathematical definition and analysis of the retinex algorithm. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  H. Ridley Eye and Brain , 1973 .

[9]  Edoardo Provenzi,et al.  A Multi-Modal Approach to Perceptual Tone Mapping , 2009, 2009 Conference for Visual Media Production.

[10]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[11]  Edwin Herbert Land,et al.  The Retinex Theory of Color Vision SCIENTIFIC AMERICAN , 2009 .

[12]  Marc Ebner Combining White-Patch Retinex and the Gray World Assumption to Achieve Color Constancy for Multiple Illuminants , 2003, DAGM-Symposium.

[13]  O. Creutzfeldt,et al.  Darkness induction, retinex and cooperative mechanisms in vision , 2004, Experimental Brain Research.

[14]  Guillermo Sapiro,et al.  Structure and texture filling-in of missing image blocks in wireless transmission and compression , 2002, Proceedings. International Conference on Image Processing.

[15]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[16]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[17]  Guillermo Sapiro,et al.  Image filling-in in a decomposition space , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[18]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[19]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[20]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[21]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[22]  Guillermo Sapiro,et al.  Morphing active contours: a geometric approach to topology-independent image segmentation and tracking , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[23]  G West,et al.  Color perception and the limits of color constancy , 1979, Journal of mathematical biology.

[24]  E. Marg A VISION OF THE BRAIN , 1994 .

[25]  E H Land,et al.  Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[27]  Carlo Gatta,et al.  A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Contrast , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  B. Wandell Foundations of vision , 1995 .

[29]  John J. McCann Guest Editorial: Special Section on Retinex at 40 , 2004, J. Electronic Imaging.

[30]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[31]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[32]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[33]  Alessandro Rizzi,et al.  Random Spray Retinex: A New Retinex Implementation to Investigate the Local Properties of the Model , 2007, IEEE Transactions on Image Processing.

[34]  No Value,et al.  IEEE International Conference on Image Processing , 2003 .

[35]  Alessandro Rizzi,et al.  Perceptual Color Correction Through Variational Techniques , 2007, IEEE Transactions on Image Processing.

[36]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[37]  D. Jameson,et al.  Theory of brightness and color contrast in human vision. , 1964, Vision research.

[38]  A Hurlbert,et al.  Formal connections between lightness algorithms. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[39]  O. Creutzfeldt,et al.  Chromatic induction and brightness contrast: a relativistic color model. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[40]  G. Sapiro,et al.  Histogram Modification via Differential Equations , 1997 .

[41]  D. Hubel Eye, brain, and vision , 1988 .

[42]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[43]  Gregory Randall,et al.  Neuro3D: an interactive 3D reconstruction system of serial sections using automatic registration , 1998, Photonics West - Biomedical Optics.

[44]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[45]  Marcelo Bertalmío,et al.  Axiomatic scalar data interpolation on manifolds , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).