From stretchable to reconfigurable inorganic electronics

Abstract Today’s state-of-the-art electronics are high performing, energy efficient, multi-functional and cost effective. However, they are also typically rigid and brittle. With the emergence of the Internet of Everything, electronic applications are expanding into previously unexplored areas, like healthcare, smart wearable artifacts, and robotics. One major challenge is the physical asymmetry of target application surfaces, which often cause mechanical stretching, contracting, twisting and other deformations to the application. In this review paper, we explore materials, processes, mechanics and devices that enable physically stretchable and reconfigurable electronics. While the concept of stretchable electronics is commonly used in practice, the notion of physically reconfigurable electronics is still in its infancy. Because organic materials are commonly naturally stretchable and physically deformable, we predominantly focus on electronics made from inorganic materials that have the capacity for physical stretching and reconfiguration while retaining their intended attributes. We emphasize how applications of electronics dictate theory to integration strategy for stretchable and reconfigurable inorganic electronics.

[1]  Fan Gao,et al.  Nanowire Joining Methods , 2010 .

[2]  Sheng Xu,et al.  A hierarchical computational model for stretchable interconnects with fractal-inspired designs , 2014 .

[3]  C. van Hengel,et al.  Stress-strain curve , 2001 .

[4]  T. Hua,et al.  Flexible Organic Electronics in Biology: Materials and Devices , 2015, Advanced materials.

[5]  Stephanie J. Benight,et al.  Stretchable and self-healing polymers and devices for electronic skin , 2013 .

[6]  Keunsik Lee,et al.  Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. , 2013, ACS applied materials & interfaces.

[7]  Oliver Harnack,et al.  Rectifying Behavior of Electrically Aligned ZnO Nanorods , 2003 .

[8]  H. Mi,et al.  Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites , 2016 .

[9]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[10]  Stephen Y. Chou,et al.  Lithographically induced self-construction of polymer microstructures for resistless patterning , 1999 .

[11]  James J. S. Norton,et al.  Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface , 2015, Proceedings of the National Academy of Sciences.

[12]  Weifeng Zhang,et al.  A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode , 2015, Nanoscale Research Letters.

[13]  Atif Shamim,et al.  Metal/Polymer Based Stretchable Antenna for Constant Frequency Far‐Field Communication in Wearable Electronics , 2015 .

[14]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[15]  Ying Li,et al.  Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. , 2015, ACS nano.

[16]  Joanna M Nassar,et al.  Ultrastretchable and Flexible Copper Interconnect‐Based Smart Patch for Adaptive Thermotherapy , 2015, Advanced healthcare materials.

[17]  Sarah S. Bedair,et al.  Stretchable Inductor Design , 2015, IEEE Transactions on Electron Devices.

[18]  Feng Xu,et al.  Strain-release assembly of nanowires on stretchable substrates. , 2011, ACS nano.

[19]  Seung Hwan Ko,et al.  A Hyper‐Stretchable Elastic‐Composite Energy Harvester , 2015, Advanced materials.

[20]  Hyoyoung Lee,et al.  Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes. , 2016, Nanoscale.

[21]  Carl W. Magnuson,et al.  Improved electrical conductivity of graphene films integrated with metal nanowires. , 2012, Nano letters.

[22]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[23]  Jin-Woo Choi,et al.  Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing , 2009 .

[24]  K. Jain,et al.  Design and Fabrication of Large-Area, Redundant, Stretchable Interconnect Meshes Using Excimer Laser Photoablation and In Situ Masking , 2010, IEEE Transactions on Advanced Packaging.

[25]  Lingqian Kong,et al.  Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. , 2014, Nanoscale.

[26]  Jang‐Ung Park,et al.  Highly Transparent and Stretchable Field‐Effect Transistor Sensors Using Graphene–Nanowire Hybrid Nanostructures , 2015, Advanced materials.

[27]  Woosik Lee,et al.  Fractal design concepts for stretchable electronics , 2014, Nature Communications.

[28]  Bingquan Wang,et al.  Facile Fabrication of Bi2WO6/Ag2S Heterostructure with Enhanced Visible-Light-Driven Photocatalytic Performances , 2016, Nanoscale Research Letters.

[29]  Lesley Shannon,et al.  Characterization of Stretchable Interconnects Fabricated Using a Low Cost Metallization Transfer Process onto PDMS , 2015 .

[30]  Muhammad M. Hussain,et al.  Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[31]  Jin Kon Kim,et al.  Interfacing liquid metals with stretchable metal conductors. , 2015, ACS applied materials & interfaces.

[32]  Eui-Hyeok Yang,et al.  Hierarchical magnetic assembly of nanowires , 2007 .

[33]  A. Bernanose Sur le mécanisme de l’électroluminescence organique , 1955 .

[34]  Rajagopal Ramasubramaniam,et al.  Homogeneous carbon nanotube/polymer composites for electrical applications , 2003 .

[35]  Nae-Eung Lee,et al.  Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. , 2015, ACS nano.

[36]  Jeong-Yun Sun,et al.  Columnar grown copper films on polyimides strained beyond 100% , 2015, Scientific Reports.

[37]  John A. Rogers,et al.  Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics , 2015, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[38]  T. Kenny,et al.  Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites. , 2015, ACS applied materials & interfaces.

[39]  Muhammad Mustafa Hussain,et al.  Design and characterization of ultra-stretchable monolithic silicon fabric , 2014 .

[40]  G. Whitesides,et al.  Stretchable Microfluidic Radiofrequency Antennas , 2010, Advanced materials.

[41]  Hanqing Jiang,et al.  Archimedean spiral design for extremely stretchable interconnects , 2014 .

[42]  M. Grado-Caffaro,et al.  Theoretical evaluation of electron mobility in multi-walled carbon nanotubes , 2004 .

[43]  T. Fang,et al.  Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations , 2016 .

[44]  J. Murthy,et al.  Percolating conduction in finite nanotube networks. , 2005, Physical review letters.

[45]  Huanyu Cheng,et al.  Mechanics of ultra-stretchable self-similar serpentine interconnects , 2013 .

[46]  Muhammad M. Hussain,et al.  Transformational electronics are now reconfiguring , 2015, Defense + Security Symposium.

[47]  Jian Wang,et al.  DIRECT NANOIMPRINT OF SUBMICRON ORGANIC LIGHT-EMITTING STRUCTURES , 1999 .

[48]  Qingshui Xie,et al.  Copper Nanowires as Fully Transparent Conductive Electrodes , 2013, Scientific Reports.

[49]  Chang Su Kim,et al.  Highly Efficient and Bendable Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2013 .

[50]  Yi Cui,et al.  Semitransparent organic photovoltaic cells with laminated top electrode. , 2010, Nano letters.

[51]  A. Voet,et al.  Accessibility of the Carbon Black Particle Surface to Elastomers , 1970 .

[52]  Y. Son,et al.  Prediction of delamination and tearing during stamping of polymer-coated metal sheet , 2015 .

[53]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[54]  Chang-Soo Han,et al.  Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors , 2014, Nanotechnology.

[55]  Yang Yang,et al.  Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. , 2009, Nano letters.

[56]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[57]  M. Cordill,et al.  Thickness effect on the fracture and delamination of titanium films , 2015 .

[58]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[59]  K. Röll,et al.  Analysis of stress and strain distribution in thin films and substrates , 1976 .

[60]  M. Maugey,et al.  An Experimental Approach to the Percolation of Sticky Nanotubes , 2005, Science.

[61]  B. Wiley,et al.  Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. , 2013, ACS nano.

[62]  C. Kim,et al.  Measurement of mechanical properties for MEMS materials , 1999 .

[63]  C. K. Cheng,et al.  Screen printing of stretchable electrodes for large area LED matrix , 2015 .

[64]  Carmel Majidi,et al.  High‐Density Soft‐Matter Electronics with Micron‐Scale Line Width , 2014, Advanced materials.

[65]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[66]  Kyoung Won Cho,et al.  Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System , 2015 .

[67]  M. Telford The case for bulk metallic glass , 2004 .

[68]  J. Kong,et al.  Simple method for high-performance stretchable composite conductors with entrapped air bubbles , 2016, Nanoscale Research Letters.

[69]  L. Catherine Brinson,et al.  Polymer Engineering Science and Viscoelasticity , 2008 .

[70]  S. Ko,et al.  Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network , 2012, Advanced materials.

[71]  M. Vosgueritchian,et al.  Stretchable Energy‐Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes , 2014, Advanced materials.

[72]  L. Lorenzelli,et al.  Design of aluminum/polyimide stretchable interconnects investigated through in-situ testing , 2015, 2015 XVIII AISEM Annual Conference.

[73]  M. Berggren,et al.  Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold , 2014, Advanced materials.

[74]  Yonggang Huang,et al.  Origami MEMS and NEMS , 2016 .

[75]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[76]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[77]  J. Sturm,et al.  Integrated three-color organic light-emitting devices , 1996 .

[78]  B. C. Kim,et al.  Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices , 2015 .

[79]  G. Eifert,et al.  Reliability and validity of the mercury in rubber strain gauge measure of penile circumference , 1979 .

[80]  S. Han,et al.  Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. , 2013, ACS applied materials & interfaces.

[81]  R. Rahimi,et al.  A sewing-enabled stitch-and-transfer method for robust, ultra-stretchable, conductive interconnects , 2014 .

[82]  David Roylance,et al.  MECHANICAL PROPERTIES OF MATERIALS , 2008 .

[83]  S. Yao,et al.  Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. , 2014, Nanoscale.

[84]  Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology. , 2008, Optics express.

[85]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[86]  Mario Miscuglio,et al.  Highly Elastic and Conductive Human‐Based Protein Hybrid Hydrogels , 2016, Advanced materials.

[87]  Sigurd Wagner,et al.  Micromechanics of macroelectronics , 2005 .

[88]  Lian Gao,et al.  Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. , 2015, ACS nano.

[89]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[90]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[91]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[92]  M. Berggren,et al.  Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. , 2009, Nature materials.

[93]  I. De Wolf,et al.  Reliability of MEMS , 2006, EuroSime 2006 - 7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems.

[94]  Forrest,et al.  Micropatterning of organic electronic devices by cold-welding , 2000, Science.

[95]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[96]  Mark E. Thompson,et al.  Effect of carbazole–oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes , 2002 .

[97]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[98]  Sohee Kim,et al.  A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications. , 2016, ACS applied materials & interfaces.

[99]  Zhenan Bao,et al.  A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing , 2015, Nature Communications.

[100]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[101]  Insang You,et al.  Material approaches to stretchable strain sensors. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[102]  Thomas M. Higgins,et al.  Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. , 2009, ACS nano.

[103]  Kees Bastiaansen,et al.  Patterning of polymer-supported metal films by microcutting , 2000, Nature.

[104]  Guangming Chen,et al.  Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites , 2016 .

[105]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[106]  Takeo Kawase,et al.  Very high-mobility organic single-crystal transistors with in-crystal conduction channels , 2007 .

[107]  John A. Rogers,et al.  Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate , 2015 .

[108]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[109]  Toshiyuki Tsuchiya,et al.  Reliability of MEMS , 2007 .

[110]  Zhenan Bao,et al.  Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. , 2013, Nature materials.

[111]  S. Fu,et al.  Electrical switch for smart pH self-adjusting system based on silver nanowire/polyaniline nanocomposite film. , 2015, ACS nano.

[112]  Yong Zhu,et al.  Highly Conductive and Stretchable Silver Nanowire Conductors , 2012, Advanced materials.

[113]  Magnus Jobs,et al.  Liquid alloy printing of microfluidic stretchable electronics. , 2012, Lab on a chip.

[114]  Fu-Kuo Chang,et al.  An Approach to Cost-Effective, Robust, Large-Area Electronics using Monolithic Silicon , 2007, 2007 IEEE International Electron Devices Meeting.

[115]  P. Paul Ruden,et al.  High-Mobility Transistors Based on Single Crystals of Isotopically Substituted Rubrene-d28 , 2013 .

[116]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[117]  Ping Sun,et al.  Ionic liquids in analytical chemistry. , 2010, Analytica chimica acta.

[118]  Bernard Geffroy,et al.  Organic light‐emitting diode (OLED) technology: materials, devices and display technologies , 2006 .

[119]  Yuan Lin,et al.  Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites , 2015 .

[120]  V. M. Pudalov,et al.  Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s , 2003 .

[121]  N. Berme,et al.  On the construction, circuitry and properties of liquid metal strain gages. , 1988, Journal of Biomechanics.

[122]  A. Gent,et al.  Adhesion of carbon black to elastomers , 2012 .

[123]  Zhenan Bao,et al.  Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method , 2014, Nature Communications.

[124]  Hak-Sung Kim,et al.  Photonic welding of ultra-long copper nanowire network for flexible transparent electrodes using white flash light sintering , 2016 .

[125]  Gordon G Wallace,et al.  Buckled, Stretchable Polypyrrole Electrodes for Battery Applications , 2011, Advanced materials.

[126]  Xiaojun Zeng,et al.  A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer , 2010, Advanced materials.

[127]  Chao-Ming Chen,et al.  Design, Fabrication and Failure Analysis of Stretchable Electrical Routings , 2014, Sensors.

[128]  S. Hong,et al.  Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers. , 2016, ACS applied materials & interfaces.

[129]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[130]  Feng Gao,et al.  Large area, high resolution, dry printing of conducting polymers for organic electronics , 2003 .

[131]  Liqun Zhang,et al.  Elastomeric composites based on carbon nanomaterials , 2015, Nanotechnology.

[132]  S. Yao,et al.  Nanomaterial‐Enabled Stretchable Conductors: Strategies, Materials and Devices , 2015, Advanced materials.

[133]  George M. Whitesides,et al.  Microsolidics: Fabrication of Three‐Dimensional Metallic Microstructures in Poly(dimethylsiloxane) , 2007 .

[134]  S. J. French,et al.  THE SYSTEM GALLIUM-INDIUM , 1937 .

[135]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[136]  A. Khademhosseini,et al.  Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. , 2013, ACS nano.

[137]  Rinze Benedictus,et al.  Methods for the prediction of fatigue delamination growth in composites and adhesive bonds: A critical review , 2013 .

[138]  Rebecca K. Kramer,et al.  Masked Deposition of Gallium‐Indium Alloys for Liquid‐Embedded Elastomer Conductors , 2013 .

[139]  P. Charbonneau,et al.  The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. , 2012, Nanoscale.

[140]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[141]  Jin-Woo Park,et al.  Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. , 2014, ACS applied materials & interfaces.

[142]  J. Coleman,et al.  Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. , 2011, Small.

[143]  Soon-Ki Kwon,et al.  Record high hole mobility in polymer semiconductors via side-chain engineering. , 2013, Journal of the American Chemical Society.

[144]  Young Bum Lee,et al.  Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. , 2015, ACS nano.

[145]  W. Choy,et al.  Locally Welded Silver Nano‐Network Transparent Electrodes with High Operational Stability by a Simple Alcohol‐Based Chemical Approach , 2015 .

[146]  Jianhua Deng,et al.  The enhanced anticoagulation for graphene induced by COOH+ ion implantation , 2015, Nanoscale Research Letters.

[147]  Cheng Yang,et al.  High performance silver nanowire based transparent electrodes reinforced by conductive polymer adhesive , 2015, 2015 16th International Conference on Electronic Packaging Technology (ICEPT).

[148]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[149]  Shixuan Yang,et al.  Indium Tin Oxide (ITO) serpentine ribbons on soft substrates stretched beyond 100 , 2015 .

[150]  B. Wiley,et al.  Solution-processed flexible polymer solar cells with silver nanowire electrodes. , 2011, ACS applied materials & interfaces.

[151]  Qibing Pei,et al.  Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric , 2015, Nature Communications.

[152]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[153]  J. Coleman,et al.  The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter , 2012, Nanotechnology.

[154]  Minbaek Lee,et al.  Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics. , 2015, ACS nano.

[155]  N. Thejo Kalyani,et al.  Organic light emitting diodes: Energy saving lighting technology—A review , 2012 .

[156]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[157]  Stéphanie P. Lacour,et al.  Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[158]  Shantonu Biswas,et al.  Millimeter Thin and Rubber-Like Solid-State Lighting Modules Fabricated Using Roll-to-Roll Fluidic Self-Assembly and Lamination , 2015, Advanced materials.

[159]  Z. Gagnon,et al.  Contactless microfluidic pumping using microchannel-integrated carbon black composite membranes. , 2015, Biomicrofluidics.

[160]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[161]  N. Lu,et al.  Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates , 2014, International Journal of Fracture.

[162]  Darren J. Martin,et al.  Polyethylene multiwalled carbon nanotube composites , 2005 .

[163]  B. Ziaie,et al.  A low-cost fabrication technique for direct sewing stretchable interconnetions for wearable electronics , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[164]  Pooi See Lee,et al.  Stretchable and wearable electrochromic devices. , 2014, ACS nano.

[165]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[166]  Yan Wang,et al.  Liquid-Wetting-Solid Strategy To Fabricate Stretchable Sensors for Human-Motion Detection , 2016 .

[167]  Jinping Ou,et al.  Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality , 2015 .

[168]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[169]  T. Lippert,et al.  Laser induced molecular transfer using ablation of a triazeno-polymer , 1998 .

[170]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .

[171]  Yao-Feng Chang,et al.  “Cut‐and‐Paste” Manufacture of Multiparametric Epidermal Sensor Systems , 2015, Advanced materials.

[172]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[173]  John A. Rogers,et al.  Mechanics of stretchable batteries and supercapacitors , 2015 .

[174]  Stephen R. Forrest,et al.  Fabrication of Organic Light‐Emitting Devices by Low‐Pressure Cold Welding , 2003 .

[175]  Seulah Lee,et al.  Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics , 2015 .

[176]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[177]  I. Park,et al.  Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. , 2014, ACS nano.

[178]  Yonggang Huang,et al.  A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes , 2015, Proceedings of the National Academy of Sciences.

[179]  Hagen Klauk,et al.  Organic electronics : materials, manufacturing and applications , 2006 .

[180]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[181]  S. Vlassov,et al.  Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests , 2013 .

[182]  Bin Sun,et al.  Record High Electron Mobility of 6.3 cm2V−1s−1 Achieved for Polymer Semiconductors Using a New Building Block , 2014, Advanced materials.

[183]  Ultra-foldable/stretchable wideband RF interconnects using laser ablation of metal film on a flexible substrate , 2015, 2015 European Microwave Conference (EuMC).

[184]  Tal Dvir,et al.  Nanowired three dimensional cardiac patches , 2011, Nature nanotechnology.