Visualization methods for longitudinal social networks and stochastic actor-oriented modeling

Abstract As a consequence of the rising interest in longitudinal social networks and their analysis, there is also an increasing demand for tools to visualize them. We argue that similar adaptations of state-of-the-art graph-drawing methods can be used to visualize both, longitudinal networks and predictions of stochastic actor-oriented models (SAOMs), the most prominent approach for analyzing such networks. The proposed methods are illustrated on a longitudinal network of acquaintanceship among university freshmen.

[1]  Stephan Diehl,et al.  Graphs, They Are Changing , 2002, GD.

[2]  Peter Eades,et al.  On-line Animated Visualization of Huge Graphs using a Modified Spring Algorithm , 1998, J. Vis. Lang. Comput..

[3]  Stephen C. North,et al.  Incremental Layout in DynaDAG , 1995, GD.

[4]  Helen C. Purchase,et al.  Extremes Are Better: Investigating Mental Map Preservation in Dynamic Graphs , 2008, Diagrams.

[5]  Frances Paulisch,et al.  Using constraints to achieve stability in automatic graph layout algorithms , 1990, CHI '90.

[6]  Roberto Tamassia,et al.  Difference Metrics for Interactive Orthogonal Graph Drawing Algorithms , 2000, J. Graph Algorithms Appl..

[7]  Kelly A. Lyons,et al.  Algorithms for Cluster Busting in Anchored Graph Drawing , 1998, J. Graph Algorithms Appl..

[8]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[9]  Aaron Clauset,et al.  Dynamic Networks , 2014, Encyclopedia of Social Network Analysis and Mining.

[10]  Tom A. B. Snijders,et al.  Introduction to stochastic actor-based models for network dynamics , 2010, Soc. Networks.

[11]  Kim Marriott,et al.  Topology Preserving Constrained Graph Layout , 2009, GD.

[12]  Ulrik Brandes,et al.  Explanation Through Network Visualization , 2006 .

[13]  Michael Jünger,et al.  Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.

[14]  T. Snijders,et al.  Bayesian inference for dynamic social network data , 2007 .

[15]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[16]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[17]  Alden S. Klovdahl,et al.  A note on images of networks , 1981 .

[18]  E. Aronson,et al.  Theory and method , 1985 .

[19]  Graham K. Rand,et al.  Quantitative Applications in the Social Sciences , 1983 .

[20]  H. Laborit,et al.  [Experimental study]. , 1958, Bulletin mensuel - Societe de medecine militaire francaise.

[21]  R. Sibson Studies in the Robustness of Multidimensional Scaling: Procrustes Statistics , 1978 .

[22]  Sue Whitesides,et al.  Proceedings of the 6th International Symposium on Graph Drawing , 1998 .

[23]  Michael T. Goodrich,et al.  A Multi-dimensional Approach to Force-Directed Layouts of Large Graphs , 2000, Graph Drawing.

[24]  Tom A. B. Snijders,et al.  Manual for SIENA version 2.1 , 2005 .

[25]  Helen C. Purchase,et al.  The 'Mental Map' versus 'Static Aesthetic' Compromise in Dynamic Graphs : A User Study , 2008, AUIC.

[26]  Georg Groh Interactively Visualizing Dynamic Social Networks with DySoN , 2009 .

[27]  R. Karl Rethemeyer,et al.  Network analysis , 2011 .

[28]  Peter Eades,et al.  Journal of Graph Algorithms and Applications Graph Drawing in Motion , 2022 .

[29]  Michael Schweinberger,et al.  MAXIMUM LIKELIHOOD ESTIMATION FOR SOCIAL NETWORK DYNAMICS. , 2010, The annals of applied statistics.

[30]  M. Schweinberger Statistical modelling of network panel data: goodness of fit. , 2012, The British journal of mathematical and statistical psychology.

[31]  Yifan Hu,et al.  Efficient Node Overlap Removal Using a Proximity Stress Model , 2009, GD.

[32]  Tim Dwyer,et al.  Visual analysis of network centralities , 2006, APVIS.

[33]  Jarke J. van Wijk,et al.  Graph Visualization , 2011, GD.

[34]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[35]  T. Snijders,et al.  Modeling the Coevolution of Networks and Behavior , 2007 .

[36]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[37]  Carsten Friedrich,et al.  Graph Drawing in Motion II , 2001, GD.

[38]  Luis Russo,et al.  Who shall survive?: Foundations of sociometry group psychotherapy and sociodrama , 2010 .

[39]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[40]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[41]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[42]  Ulrik Brandes,et al.  Social Networks , 2013, Handbook of Graph Drawing and Visualization.

[43]  David R. Gallagher,et al.  Visualising Changes in Fund Manager Holdings in Two and a Half-Dimensions , 2004, Inf. Vis..

[44]  Ulrik Brandes,et al.  Journal of Graph Algorithms and Applications More Flexible Radial Layout , 2022 .

[45]  Ulrik Brandes,et al.  A Bayesian Paradigm for Dynamic Graph Layout , 1997, GD.

[46]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[47]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[48]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[49]  P. Pattison,et al.  New Specifications for Exponential Random Graph Models , 2006 .

[50]  Ulrik Brandes,et al.  An Experimental Study on Distance-Based Graph Drawing , 2009, GD.

[51]  Ulrik Brandes,et al.  Visual Unrolling of Network Evolution and the Analysis of Dynamic Discourse† , 2003, Inf. Vis..

[52]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.

[53]  Ulrik Brandes,et al.  Eigensolver Methods for Progressive Multidimensional Scaling of Large Data , 2006, GD.

[54]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[55]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[56]  Markus M. Geipel,et al.  Self-Organization applied to Dynamic Network Layout , 2007, ArXiv.

[57]  Carsten Friedrich,et al.  Applying Gestalt principles to animated visualizations of network data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[58]  Satoru Kawai,et al.  A simple method for computing general position in displaying three-dimensional objects , 1988, Comput. Vis. Graph. Image Process..

[59]  Hideo Nakano,et al.  A Broadcasting Algorithm with Time and Message Optimum on Arrangement Graphs , 1998, J. Graph Algorithms Appl..

[60]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[61]  Armand Navabi,et al.  Journal of Graph Algorithms and Applications Simultaneous Graph Drawing: Layout Algorithms and Visualization Schemes , 2022 .

[62]  Jürgen Branke,et al.  Dynamic Graph Drawing , 2001, Drawing Graphs.

[63]  Ulrik Brandes,et al.  Drawing on Physical Analogies , 2001, Drawing Graphs.

[64]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[65]  C. Steglich,et al.  DYNAMIC NETWORKS AND BEHAVIOR: SEPARATING SELECTION FROM INFLUENCE: separating selection from influence , 2010 .

[66]  Ayellet Tal,et al.  Online Dynamic Graph Drawing , 2008, IEEE Transactions on Visualization and Computer Graphics.

[67]  T. Snijders Models for longitudinal network datain , 2005 .

[68]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[69]  P. R. Krishnaiah,et al.  Developments in Statistics , 1979 .

[70]  Linton C. Freeman,et al.  Carnegie Mellon: Journal of Social Structure: Visualizing Social Networks Visualizing Social Networks , 2022 .

[71]  Stanley Wasserman,et al.  Social Network Analysis: Social Network Data , 1994 .

[72]  Robert F. Cohen,et al.  An experimental study of the basis for graph drawing algorithms , 1997, JEAL.