Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study

BackgroundSorafenib is the first agent that has demonstrated an improved overall survival benefit in advanced hepatocellular carcinoma (HCC), setting a new standard for first-line treatment. However, no one has yet been able to predict sensitivity to sorafenib. Pre-treatment pERK level has been shown to be associated with favorable response to such therapy in a phase II clinical study, indicating that pERK may be a potential biomarker for treatment of HCC with sorafenib.MethodsThe effects of sorafenib and 5-fluorouracil (5-FU) on cell proliferation were evaluated by cell viability assays in four HCC cell lines (SMMC-7721, MHCC97-L, MHCC97-H and HCCLM6) with different metastatic potential and basal pERK expression levels. Expression levels of pERK were determined by immunocytochemical quantification together with western blot analysis, and pERK density values were also calculated. Correlation analyses were then carried out between the IC50 values of drugs and pERK density values. After basal ERK phosphorylation was down-regulated with U0126 in MHCC97-H cells, cellular responsiveness to sorafenib was assessed by cell viability assay.ResultsBasal pERK levels increased stepwise in cell lines in accordance with their metastatic potential. Sorafenib inhibited ERK phosphorylation in a dose-dependent manner in all four cell lines at a concentration between 5 and 20 μM, but the degree of inhibition was significantly different according to their basal pERK expression level (P < 0.0001). In contrast, no significant change was observed after 5-FU treatment. Correlation analyses between the IC50 values and pERK densities revealed that the effects of sorafenib on cell proliferation were significantly correlated with basal pERK levels (Spearman r = -0.8671, P = 0.0003). Resistance to 5-FU was also significantly associated with basal pERK expression in these HCC cell lines (Spearman r = 0.7832, P = 0.0026). After the basal ERK phosphorylation level in MHCC97-H cells was reduced with U0126, they were significantly less sensitive to sorafenib-mediated growth inhibition, with an IC50 of 17.31 ± 1.62 μM versus 10.81 ± 1.24 μM (P = 0.0281).ConclusionIn this in vitro study, pERK was confirmed to be a potential biomarker predictive of sensitivity to sorafenib in treating HCC. The RAF/MEK/ERK pathway may be involved in drug resistance to traditional chemotherapy in HCC.

[1]  S. S. Koh,et al.  Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. , 2004, Hepatology research : the official journal of the Japan Society of Hepatology.

[2]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[3]  J. Dufour,et al.  Angiogenesis and hepatocellular carcinoma. , 2004, Journal of hepatology.

[4]  M. Cervello,et al.  Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway , 2007, Cancer biology & therapy.

[5]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.

[6]  D. Amadori,et al.  Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[8]  Yan Li,et al.  Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics , 2004, Journal of Cancer Research and Clinical Oncology.

[9]  S. Wilhelm,et al.  Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. , 2006, Cancer research.

[10]  C. Der,et al.  Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer , 2007, Oncogene.

[11]  S. Ye,et al.  New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis , 1999, British Journal of Cancer.

[12]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[13]  S. Paggi,et al.  Sorafenib in Advanced Hepatocellular Carcinoma , 2008 .

[14]  D. Auclair,et al.  BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis , 2004, Cancer Research.

[15]  J. Bruix,et al.  Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival , 2003, Hepatology.

[16]  J. Ferlay,et al.  Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.

[17]  Zhao-You Tang,et al.  High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  T. Endo,et al.  Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells. , 2001, Cancer research.

[19]  G. Dusheiko,et al.  Management of hepatocellular carcinoma. , 1992, Journal of hepatology.

[20]  K. Reddy,et al.  Role of MAP kinase in tumor progression and invasion , 2003, Cancer and Metastasis Reviews.

[21]  Stephen L. Abrams,et al.  Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. , 2006, Advances in enzyme regulation.