A new nonlinear interval programming method for uncertain problems with dependent interval variables

This paper proposes a new nonlinear interval programming method that can be used to handle uncertain optimization problems when there are dependencies among the interval variables. The uncertain domain is modeled using a multidimensional parallelepiped interval model. The model depicts single-variable uncertainty using a marginal interval and depicts the degree of dependencies among the interval variables using correlation angles and correlation coefficients. Based on the order relation of interval and the possibility degree of interval, the uncertain optimization problem is converted to a deterministic two-layer nesting optimization problem. The affine coordinate is then introduced to convert the uncertain domain of a multidimensional parallelepiped interval model to a standard interval uncertain domain. A highly efficient iterative algorithm is formulated to generate an efficient solution for the multi-layer nesting optimization problem after the conversion. Three computational examples are given to verify the effectiveness of the proposed method.

[1]  Tong Shaocheng,et al.  Interval number and fuzzy number linear programmings , 1994 .

[2]  Xu Guo,et al.  Confidence structural robust design and optimization under stiffness and load uncertainties , 2009 .

[3]  Leslie George Tham,et al.  Robust design of structures using convex models , 2003 .

[4]  C. Jiang,et al.  A sequential nonlinear interval number programming method for uncertain structures , 2008 .

[5]  Xu Han,et al.  A New Interval Comparison Relation and Application in Interval Number Programming for Uncertain Problems , 2011 .

[6]  H. Rommelfanger,et al.  Linear programming with fuzzy objectives , 1989 .

[7]  Zhang Quan,et al.  A Ranking Approach for Interval Numbers in Uncertain Multiple Attribute Decision Making Problems , 1999 .

[8]  Cheng Zhi Feasibility Analysis for Optimization of Uncertain Systems with Interval Parameters , 2004 .

[9]  Jie Liu,et al.  Multidimensional parallelepiped model—a new type of non‐probabilistic convex model for structural uncertainty analysis , 2015 .

[10]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[11]  G. P. Liu,et al.  A nonlinear interval number programming method for uncertain optimization problems , 2008, Eur. J. Oper. Res..

[12]  R. Wets,et al.  Stochastic programming , 1989 .

[13]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function , 2007, Eur. J. Oper. Res..

[14]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions , 2009, Eur. J. Oper. Res..

[15]  Dorota Kuchta,et al.  A concept of the optimal solution of the transportation problem with fuzzy cost coefficients , 1996, Fuzzy Sets Syst..

[16]  Zhan Kang,et al.  Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes , 2006 .

[17]  Xu Han,et al.  An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method , 2007 .

[18]  Hideo Tanaka,et al.  On Fuzzy-Mathematical Programming , 1973 .

[19]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[20]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[21]  Wei Gao,et al.  Reliability-Based Optimization of Active Nonstationary Random Vibration Control , 2005 .

[22]  Guohe Huang,et al.  Analysis of Solution Methods for Interval Linear Programming , 2011 .

[23]  L. Liu,et al.  An interval nonlinear program for the planning of waste management systems with economies-of-scale effects - A case study for the region of Hamilton, Ontario, Canada , 2006, Eur. J. Oper. Res..

[24]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[25]  Debjani Chakraborty,et al.  Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming , 2001, Fuzzy Sets Syst..

[26]  Frank Ayres Schaum's outline of theory and problems of projective geometry , 1967 .

[27]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[28]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[29]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.