Microarray expression profiling: capturing a genome‐wide portrait of the transcriptome

The bacterial transcriptome is a dynamic entity that reflects the organism's immediate, ongoing and genome‐wide response to its environment. Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a ‘system’ that is more than the sum of its parts. The vigilance of microorganisms to environmental change, the alacrity of the transcriptional response, the short half‐life of bacterial mRNA and the genome‐scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to chang‐ing conditions of growth; the identification of co‐ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of bacterial pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival in the host's microenvironment. Identifying these colonization strategies and their cognate expression patterns involves a ‘deconstruction’ process that combines bioinformatics analysis and in vitro DNA array experimentation.

[1]  D. Relman,et al.  Using DNA microarrays to study host-microbe interactions. , 2000, Emerging infectious diseases.

[2]  R. Larossa,et al.  Impact of genomic technologies on studies of bacterial gene expression. , 2002, Annual review of microbiology.

[3]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[4]  Lucy Shapiro,et al.  Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA , 2001 .

[6]  G. Homuth,et al.  Alkaline shock induces the Bacillus subtilisσW regulon , 2001 .

[7]  F. Gamo,et al.  Global Transcriptional Response of Bacillus subtilis to Heat Shock , 2001, Journal of bacteriology.

[8]  G. Storz,et al.  Identification of novel small RNAs using comparative genomics and microarrays. , 2001, Genes & development.

[9]  Dong-Eun Chang,et al.  Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model , 2002, Molecular microbiology.

[10]  D. Siegele,et al.  Global Analysis of Escherichia coli Gene Expression during the Acetate-Induced Acid Tolerance Response , 2001, Journal of bacteriology.

[11]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[12]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA. , 2001, Molecular microbiology.

[13]  Preston Hunter,et al.  Genome-directed primers for selective labeling of bacterial transcripts for DNA microarray analysis , 2000, Nature Biotechnology.

[14]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Susan M. Butler,et al.  Host-induced epidemic spread of the cholera bacterium , 2002, Nature.

[16]  N. Brown,et al.  Molecular Microbiology , 1998, NATO ASI Series.

[17]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[18]  J. Mekalanos Environmental signals controlling expression of virulence determinants in bacteria , 1992, Journal of bacteriology.

[19]  P. Pomposiello,et al.  Genome-Wide Transcriptional Profiling of theEscherichia coli Responses to Superoxide Stress and Sodium Salicylate , 2001, Journal of bacteriology.

[20]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[21]  G. Homuth,et al.  Alkaline shock induces the Bacillus subtilis sigma(W) regulon. , 2001, Molecular microbiology.

[22]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[23]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[24]  H. Bremer,et al.  Determination of synthesis rate and lifetime of bacterial mRNAs. , 1987, Analytical biochemistry.

[25]  G. Schoolnik,et al.  The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages † , 2001, Molecular microbiology.

[26]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[27]  Thomas M. Shinnick,et al.  Microarray Analysis of the Mycobacterium tuberculosis Transcriptional Response to the Acidic Conditions Found in Phagosomes , 2002, Journal of bacteriology.

[28]  Jean-Jacques Daudin,et al.  Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis , 2001, Genome Biology.

[29]  K. Peck,et al.  Acid-Induced Gene Expression in Helicobacter pylori: Study in Genomic Scale by Microarray , 2001, Infection and Immunity.

[30]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Camerini-Otero,et al.  Over 1000 genes are involved in the DNA damage response of Escherichia coli , 2002, Molecular microbiology.

[32]  Jizhong Zhou,et al.  DNA Microarray Analysis of the Hyperthermophilic Archaeon Pyrococcus furiosus: Evidence for a New Type of Sulfur-Reducing Enzyme Complex , 2001, Journal of bacteriology.

[33]  D. Baldwin,et al.  A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. , 1999, Current opinion in plant biology.

[34]  Frederick R. Blattner,et al.  High-Density Microarray-Mediated Gene Expression Profiling of Escherichia coli , 2001, Journal of bacteriology.

[35]  Sidney R. Kushner,et al.  mRNA Decay in Escherichia coli Comes of Age , 2002, Journal of bacteriology.

[36]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[37]  J. Betts,et al.  Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling , 2002, Molecular microbiology.

[38]  P. Brown,et al.  Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Fleischmann,et al.  Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative σ factor, SigH , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Gary K. Schoolnik,et al.  ideR, an Essential Gene in Mycobacterium tuberculosis: Role of IdeR in Iron-Dependent Gene Expression, Iron Metabolism, and Oxidative Stress Response , 2002, Infection and Immunity.

[41]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  John Aach,et al.  Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Geesey Bacterial behavior at surfaces. , 2001, Current opinion in microbiology.

[44]  Morag R. Graham,et al.  Global differential gene expression in response to growth temperature alteration in group A Streptococcus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Ferrari,et al.  Correlation between Bacillus subtilis scoC Phenotype and Gene Expression Determined Using Microarrays for Transcriptome Analysis , 2001, Journal of bacteriology.

[46]  K. Amrein,et al.  Microarray-Based Identification of a NovelStreptococcus pneumoniae Regulon Controlled by an Autoinduced Peptide , 2000, Journal of bacteriology.

[47]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[48]  James J. Valdes,et al.  DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing inEscherichia coli , 2001, Journal of bacteriology.

[49]  Vanessa Sperandio,et al.  Quorum Sensing Is a Global Regulatory Mechanism in Enterohemorrhagic Escherichia coli O157:H7 , 2001, Journal of bacteriology.

[50]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[51]  G. Schoolnik,et al.  Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression. , 2002, Molecular microbiology.

[52]  Dirk Schnappinger,et al.  Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Hecker,et al.  Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis , 2002, Journal of bacteriology.

[54]  T Conway,et al.  DNA array analysis in a Microsoft Windows environment. , 2002, BioTechniques.

[55]  K. Shanmugam,et al.  Engineering a Homo-Ethanol Pathway inEscherichia coli: Increased Glycolytic Flux and Levels of Expression of Glycolytic Genes during Xylose Fermentation , 2001, Journal of bacteriology.

[56]  R. Kolter,et al.  Biofilm formation as microbial development. , 2000, Annual review of microbiology.

[57]  G. Martin,et al.  Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Ye,et al.  Global Gene Expression Profiles of Bacillus subtilis Grown under Anaerobic Conditions , 2000, Journal of bacteriology.

[59]  D. Botstein,et al.  DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Suzanne M. Paley,et al.  Integrated pathway/genome databases and their role in drug discovery , 1999 .

[61]  G. Storz,et al.  The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. , 2002, Molecular cell.

[62]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[63]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Friesen,et al.  Functional mRNA half lives in E. coli , 1978, Molecular and General Genetics MGG.

[65]  R. Larossa,et al.  Combined, Functional Genomic-Biochemical Approach to Intermediary Metabolism: Interaction of Acivicin, a Glutamine Amidotransferase Inhibitor, with Escherichia coliK-12 , 2001, Journal of bacteriology.

[66]  Andrew T. Revel,et al.  DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Zagursky,et al.  Transcription Profiling-Based Identification ofStaphylococcus aureus Genes Regulated by the agrand/or sarA Loci , 2001, Journal of bacteriology.

[68]  Antoine Danchin,et al.  Large‐scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid‐associated protein, H‐NS , 2001, Molecular microbiology.

[69]  G. W. Hatfield,et al.  Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. , 2000, The Journal of biological chemistry.

[70]  G. Schoolnik,et al.  Role of the extracytoplasmic‐function σ Factor σH in Mycobacterium tuberculosis global gene expression , 2002 .

[71]  M Schena,et al.  Fluorescence-based expression monitoring using microarrays. , 1999, Methods in enzymology.

[72]  V. Kapur,et al.  Pasteurella multocida Gene Expression in Response to Iron Limitation , 2001, Infection and Immunity.

[73]  Katy C. Kao,et al.  Global Expression Profiling of Acetate-grown Escherichia coli * , 2002, The Journal of Biological Chemistry.

[74]  D. Sherman,et al.  Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Rimini,et al.  Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays , 2000, Molecular microbiology.