GPCR production in a novel yeast strain that makes cholesterol-like sterols.

[1]  S. Amara,et al.  Membrane Cholesterol Modulates the Outward Facing Conformation of the Dopamine Transporter and Alters Cocaine Binding* , 2010, The Journal of Biological Chemistry.

[2]  G. Voth,et al.  A role for a specific cholesterol interaction in stabilizing the Apo configuration of the human A(2A) adenosine receptor. , 2009, Structure.

[3]  Alison G. Roberts,et al.  The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection , 2008, Proceedings of the National Academy of Sciences.

[4]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[5]  A. Chattopadhyay,et al.  Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. , 2007, Biochemical and biophysical research communications.

[6]  S. Karlish,et al.  Stabilization of Na(+),K(+)-ATPase purified from Pichia pastoris membranes by specific interactions with lipids. , 2007, Biochemistry.

[7]  L. Szente,et al.  Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. , 2007, Biochimica et biophysica acta.

[8]  J. Hancock,et al.  Lipid rafts and membrane traffic , 2007, FEBS letters.

[9]  A. Edelman,et al.  Membrane Cholesterol Content Modulates ClC-2 Gating and Sensitivity to Oxidative Stress* , 2007, Journal of Biological Chemistry.

[10]  H. Kato,et al.  Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol. , 2007, The Biochemical journal.

[11]  Jack Hoopes,et al.  Humanization of Yeast to Produce Complex Terminally Sialylated Glycoproteins , 2006, Science.

[12]  C. Vandenberg,et al.  Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. , 2004, Biophysical journal.

[13]  T. Gerngross,et al.  Advances in the production of human therapeutic proteins in yeasts and filamentous fungi , 2004, Nature Biotechnology.

[14]  Teresa Mitchell,et al.  Production of Complex Human Glycoproteins in Yeast , 2003, Science.

[15]  Byung-Kwon Choi,et al.  Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  W. Tanner,et al.  Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. , 2003, Biochimica et biophysica acta.

[17]  C. Vilchèze,et al.  Effect of the Structure of Natural Sterols and Sphingolipids on the Formation of Ordered Sphingolipid/Sterol Domains (Rafts) , 2001, The Journal of Biological Chemistry.

[18]  C. Tate,et al.  Overexpression of mammalian integral membrane proteins for structural studies , 2001, FEBS letters.

[19]  F. Cornelius Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. , 2001, Biochemistry.

[20]  J. Masson,et al.  Role of Sterols in Modulating the Human μ-Opioid Receptor Function in Saccharomyces cerevisiae * , 2000, The Journal of Biological Chemistry.

[21]  S. Kohlwein,et al.  Biochemical characterization and subcellular localization of the sterol C‐24(28) reductase, Erg4p, from the yeast Saccharomyces cerevisiae , 2000, FEBS letters.

[22]  H. Riezman,et al.  Specific sterols required for the internalization step of endocytosis in yeast. , 1999, Molecular biology of the cell.

[23]  M. Graziano,et al.  Membrane cholesterol modulates galanin-GalR2 interaction. , 1999, Biochemistry.

[24]  L. W. Parks,et al.  Use of sterol mutants as probes for sterol functions in the yeast, Saccharomyces cerevisiae. , 1999, Critical reviews in biochemistry and molecular biology.

[25]  G. Gimpl,et al.  Cholesterol as modulator of receptor function. , 1997, Biochemistry.

[26]  R. Epand,et al.  Effect of cholesterol on rhodopsin stability in disk membranes. , 1996, Biochimica et biophysica acta.

[27]  M. Bard,et al.  Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. , 1996, Gene.

[28]  R. Trumbly,et al.  Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. , 1994, Biochimica et biophysica acta.

[29]  J. González-Ros,et al.  A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. , 1994, Biochemistry.

[30]  B. Kanner,et al.  Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. , 1990, The Journal of biological chemistry.

[31]  S. Emr,et al.  Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases , 1988, Molecular and cellular biology.

[32]  F. Winston,et al.  A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. , 1987, Gene.