Feature-space analysis of unstructured meshes

Unstructured meshes are often used in simulations and imaging applications. They provide advanced flexibility in modeling abilities but are more difficult to manipulate and analyze than regular data. This work provides a novel approach for the analysis of unstructured meshes using feature-space clustering and feature-detection. Analyzing and revealing underlying structures in data involve operators on both spatial and functional domains. Slicing concentrates more on the spatial domain, while iso-surfacing or volume rendering concentrate more on the functional domain. Nevertheless, many times it is the combination of the two domains which provides real insight on the structure of the data. In this work, a combined feature-space is defined on top of unstructured meshes in order to search for structure in the data. A point in feature-space includes the spatial coordinates of the point in the mesh domain and all chosen attributes defined on the mesh. A distance measures between points in feature-space is defined enabling the utilization of clustering using the mean shift procedure (previously used for images) on unstructured meshes. Feature space analysis is shown to be useful for feature-extraction, for data exploration and partitioning.

[1]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[2]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[3]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[4]  Hugues Hoppe,et al.  New quadric metric for simplifying meshes with appearance attributes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[5]  Xinhua Zhuang,et al.  Gaussian mixture density modeling, decomposition, and applications , 1996, IEEE Trans. Image Process..

[6]  Stephen J. Roberts,et al.  Parametric and non-parametric unsupervised cluster analysis , 1997, Pattern Recognit..

[7]  Arie E. Kaufman Volume visualization , 1996, CSUR.

[8]  Anshuman Razdan,et al.  Improved Curvature Estimation for Watershed Segmentation of 3-Dimensional Meshes , 2001 .

[9]  K. Shimada,et al.  Face clustering of a large-scale CAD model for surface mesh generation , 2001, Comput. Aided Des..

[10]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Valerie Guralnik,et al.  A scalable algorithm for clustering protein sequences , 2001, BIOKDD.

[12]  Paolo Cignoni,et al.  Tetrahedra Based Volume Visualization , 1997, VisMath.

[13]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[14]  Andrew H. Gee,et al.  Regularised marching tetrahedra: improved iso-surface extraction , 1999, Comput. Graph..

[15]  G. De Soete,et al.  Clustering and Classification , 2019, Data-Driven Science and Engineering.

[16]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[17]  Daniel DeMenthon,et al.  SPATIO-TEMPORAL SEGMENTATION OF VIDEO BY HIERARCHICAL MEAN SHIFT ANALYSIS , 2002 .

[18]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[19]  Nikos Chrisochoides,et al.  Simultaneous Mesh Generation and Partitioning for Delaunay Meshes , 2000, IMR.

[20]  Gregory M. Nielson Tools for Triangulations and Tetrahedrizations , 1994, Scientific Visualization.

[21]  Gregory M. Nielson,et al.  Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.

[22]  Kenji Shimada,et al.  The 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation , 2001, Comput. Aided Des..

[23]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[24]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[25]  Bernd Hamann,et al.  Using quadratic simplicial elements for hierarchical approximation and visualization , 2002, IS&T/SPIE Electronic Imaging.

[26]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[27]  George Karypis,et al.  Multilevel algorithms for generating coarse grids for multigrid methods , 2001, SC.

[28]  Valerie Guralnik,et al.  A scalable algorithm for clustering sequential data , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[29]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[30]  Vipin Kumar,et al.  Multilevel k-way hypergraph partitioning , 1999, DAC '99.

[31]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[32]  Hans Hagen,et al.  Scientific Visualization: Overviews, Methodologies, and Techniques , 1997 .

[33]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[34]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[35]  T. J. Jankun-Kelly,et al.  A Study of Transfer Function Generation for Time-Varying Volume Data , 2001, VG.