The advancement of blood cell research by optical tweezers

Abstract Demonstration of the light radiation pressure on a microscopic level by A. Ashkin led to the invention of optical tweezers (OT). Applied in the studies of living systems, OT have become a preferable instrument for the noninvasive study of microobjects, allowing manipulation and measurement of the mechanical properties of molecules, organelles, and cells. In the present paper, we overview OT applications in hemorheological research, placing emphasis on red blood cells but also discussing OT applications for the investigation of the biomechanics of leukocytes and platelets. Blood properties have always served as a primary parameter in medical diagnostics due to the interconnection with the physiological state of an organism. Despite blood testing being a well-established procedure of conventional medicine, there are still many complex processes that must be unraveled to improve our understanding and contribute to future medicine. OT are advancing single-cell research, promising new insights into individual cell characteristics compared to the traditional approaches. We review the fundamental and practical findings revealed in blood research through the optical manipulation, stretching, guiding, immobilization, and inter-/intracellular force measurements of single blood cells.

[1]  J. Squier,et al.  Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[2]  Oguz K. Baskurt,et al.  Red Blood Cell Aggregation , 2011 .

[3]  S. Neale,et al.  Cell cytometry with a light touch: sorting microscopic matter with an optical lattice. , 2004, Journal of biological regulators and homeostatic agents.

[4]  J. Käs,et al.  The optical stretcher: a novel laser tool to micromanipulate cells. , 2001, Biophysical journal.

[5]  O. Baskurt,et al.  Erythrocyte aggregation: basic aspects and clinical importance. , 2013, Clinical hemorheology and microcirculation.

[6]  K. Greulich,et al.  Application of laser optical tweezers in immunology and molecular genetics. , 1991, Cytometry.

[7]  A. Wright,et al.  A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response , 2017, PloS one.

[8]  J. Sixma,et al.  The mechanism of red cell (dis)aggregation investigated by means of direct cell manipulation using multiple optical trapping , 1997, British journal of haematology.

[9]  Qingyue Wang,et al.  Optical trapping of red blood cells and two-photon excitation-based photodynamic study using a femtosecond laser , 2005 .

[10]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[11]  Yong-qing Li,et al.  Near-infrared Raman spectroscopy of single optically trapped biological cells. , 2002, Optics letters.

[12]  J F Antaki,et al.  Association between arterial stiffness and the deformability of red blood cells (RBCs). , 2006, Clinical hemorheology and microcirculation.

[13]  Gerhard Gompper,et al.  Equilibrium physics breakdown reveals the active nature of red blood cell flickering , 2015, Nature Physics.

[14]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[15]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries , 2006 .

[16]  H. Podbielska,et al.  Alterations of biomechanics in cancer and normal cells induced by doxorubicin. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[17]  Estela Martín Badosa,et al.  Optical trapping: a review of essential concepts , 2011 .

[18]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[19]  M. Cahalan,et al.  Mapping the sensitivity of T cells with an optical trap: polarity and minimal number of receptors for Ca(2+) signaling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R M Hochmuth,et al.  Erythrocyte membrane elasticity and viscosity. , 1987, Annual review of physiology.

[21]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[22]  J. Butler,et al.  Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils. , 1999, American journal of physiology. Cell physiology.

[23]  Oliver Otto,et al.  Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells , 2014, Nature Communications.

[24]  S. Suresh,et al.  Cell and molecular mechanics of biological materials , 2003, Nature materials.

[25]  M. Scott,et al.  Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation. , 2018, Integrative biology : quantitative biosciences from nano to macro.

[26]  C. César,et al.  Impaired red cell deformability in iron deficient subjects. , 2009, Clinical hemorheology and microcirculation.

[27]  Thomas J. Smart,et al.  Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique , 2016, Scientific Reports.

[28]  S. Chidangil,et al.  Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique , 2019, RSC advances.

[29]  Samarendra K. Mohanty,et al.  Controlled rotation of biological microscopic objects using optical line tweezers , 2003, Biotechnology Letters.

[30]  K. Greulich Manipulation of cells with laser microbeam scissors and optical tweezers: a review , 2017, Reports on progress in physics. Physical Society.

[31]  Baoli Yao,et al.  Observation of spin and orbital rotation of red blood cell in dual-beam fibre-optic trap with transverse offset , 2017 .

[32]  N. Mohandas,et al.  Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen. , 2012, Blood.

[33]  Giuseppe Pesce,et al.  Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. , 2008, Optics express.

[34]  P Memmolo,et al.  Red blood cell as an adaptive optofluidic microlens , 2015, Nature Communications.

[35]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[36]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[37]  Emad Moeendarbary,et al.  Cell mechanics: principles, practices, and prospects , 2014, Wiley interdisciplinary reviews. Systems biology and medicine.

[38]  Subra Suresh,et al.  Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. , 2012, Acta biomaterialia.

[39]  Sylvain Gigan,et al.  Speckle optical tweezers: micromanipulation with random light fields. , 2014, Optics express.

[40]  Yunlong Sheng,et al.  Calculation of spherical red blood cell deformation in a dual-beam optical stretcher. , 2007, Optics express.

[41]  A. Mazzulla,et al.  Polarization-dependent optomechanics mediated by chiral microresonators , 2014, Nature Communications.

[42]  Samarendra K. Mohanty,et al.  Optofluidic stretching of RBCs using single optical tweezers , 2008 .

[43]  Paolo Minzioni,et al.  A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level , 2016, Micromachines.

[44]  F F Costa,et al.  Elastic properties of stored red blood cells from sickle trait donor units , 2003, Vox sanguinis.

[45]  Alireza Mashaghi,et al.  Atorvastatin treatment softens human red blood cells: an optical tweezers study. , 2018, Biomedical optics express.

[46]  K. Sosada,et al.  Red Blood Cell Aggregation and Deformability among Patients Qualified for Bariatric Surgery , 2007, Obesity surgery.

[47]  D. Grier A revolution in optical manipulation , 2003, Nature.

[48]  J. Butler,et al.  Regional rheological differences in locomoting neutrophils. , 2004, American journal of physiology. Cell physiology.

[49]  Peter Lebedew,et al.  Untersuchungen über die Druckkräfte des Lichtes , 1901 .

[50]  Rosalba Saija,et al.  Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .

[51]  Igor Meglinski,et al.  Mutual interaction of red blood cells assessed by optical tweezers and scanning electron microscopy imaging. , 2018, Optics letters.

[52]  M. Neil,et al.  High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. , 2008, Biophysical journal.

[53]  Charles D. Eggleton,et al.  Linear diode laser bar optical stretchers for cell deformation , 2010, Biomedical optics express.

[54]  K. Magnusson,et al.  Mechanical manipulation of polymorphonuclear leukocyte plasma membranes with optical tweezers causes influx of extracellular calcium through membrane channels , 1999, Medical & Biological Engineering & Computing.

[55]  D. Mathur,et al.  Euler buckling-induced folding and rotation of red blood cells in an optical trap , 2006, Physical biology.

[56]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[57]  Mattias Goksör,et al.  A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. , 2005, Lab on a chip.

[58]  Chao-Hung Ho,et al.  White blood cell and platelet counts could affect whole blood viscosity. , 2004, Journal of the Chinese Medical Association : JCMA.

[59]  Yong Wang,et al.  In Vivo Manipulation of Single Biological Cells With an Optical Tweezers-Based Manipulator and a Disturbance Compensation Controller , 2017, IEEE Transactions on Robotics.

[60]  B Rieger,et al.  A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells , 2009, Journal of microscopy.

[61]  Raktim Dasgupta,et al.  Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. , 2011, Optics express.

[62]  Giorgio Volpe,et al.  Step-by-step guide to the realization of advanced optical tweezers , 2015, 1501.07894.

[63]  Michael G Nichols,et al.  Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher. , 2009, Applied optics.

[64]  D Lerche,et al.  Action of rHuEpo on mechanical membrane properties of red blood cells in children with end-stage renal disease. , 1991, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[65]  Yunlong Sheng,et al.  One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells. , 2008, Optics express.

[66]  W. Bowen,et al.  Enhanced optical trapping via structured scattering , 2015, 2105.09539.

[67]  H. Inaba,et al.  Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams , 1991 .

[68]  Fumio Oosawa,et al.  On Interaction between Two Bodies Immersed in a Solution of Macromolecules , 1954 .

[69]  K. Shung,et al.  Single-Beam Acoustic Trapping of Red Blood Cells and Polystyrene Microspheres in Flowing Red Blood Cell Saline and Plasma Suspensions. , 2017, Ultrasound in medicine & biology.

[70]  Victor Guallar,et al.  Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. , 2009, Biophysical journal.

[71]  Jonathon Howard,et al.  Optical trapping of coated microspheres. , 2008, Optics express.

[72]  Dmitri Petrov,et al.  Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps , 2012, Journal of biomedical optics.

[73]  J. Oncley,et al.  The contribution of sialic acid to the surface charge of the erythrocyte. , 1962, The Journal of biological chemistry.

[74]  Khyati Mohanty,et al.  Dynamics of Interaction of RBC with optical tweezers. , 2005, Optics express.

[75]  Julie H. Campbell,et al.  Formation of an artificial blood vessel: adhesion force measurements with optical tweezers , 2004, SPIE Optics + Photonics.

[76]  Igor Meglinski,et al.  Influence of Pulsed He–Ne Laser Irradiation on the Red Blood Cell Interaction Studied by Optical Tweezers , 2019, Micromachines.

[77]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[78]  J. Di,et al.  Manipulation on human red blood cells with femtosecond optical tweezers , 2008 .

[79]  K. Lee,et al.  Characterization of shear stress preventing red blood cells aggregation at the individual cell level: The temperature dependence. , 2017, Clinical hemorheology and microcirculation.

[80]  J. Chiu,et al.  Leukocyte–Endothelium Interaction: Measurement by Laser Tweezers Force Spectroscopy , 2006, Cardiovascular engineering.

[81]  R. Simmons,et al.  Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. , 1999, Biophysical journal.

[82]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[83]  Zhiqin Feng,et al.  Human red blood cells deformed under thermal fluid flow , 2006, Biomedical materials.

[84]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[85]  J. Simeon,et al.  Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. , 2001, Biophysical journal.

[86]  Matti Kinnunen,et al.  Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions , 2016, Journal of biomedical optics.

[87]  Igor Meglinski,et al.  Optical Tweezers in Studies of Red Blood Cells , 2020, Cells.

[88]  Yunlong Sheng,et al.  Local scattering stress distribution on surface of a spherical cell in optical stretcher. , 2006, Optics express.

[89]  A. Cowman,et al.  Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. , 2002, Blood.

[90]  Christian Dietrich,et al.  The optical cell rotator. , 2008, Optics express.

[91]  J. Gómez-Skarmeta,et al.  Heartbeat-Driven Pericardiac Fluid Forces Contribute to Epicardium Morphogenesis , 2013, Current Biology.

[92]  Halina Rubinsztein-Dunlop,et al.  Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. , 2009, Optics express.

[93]  O. Baskurt,et al.  Blood Rheology and Hemodynamics , 2003, Seminars in thrombosis and hemostasis.

[94]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[95]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[96]  Khyati Mohanty,et al.  Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy. , 2007, Journal of biomedical optics.

[97]  Don McNaughton,et al.  Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation , 2007, Analytical and bioanalytical chemistry.

[98]  A. Ashkin,et al.  Optical trapping and manipulation of single living cells using infra‐red laser beams , 1989 .

[99]  E. Corwin Handbook of pathophysiology , 1996 .

[100]  Chwee Teck Lim,et al.  Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. , 2005, Acta biomaterialia.

[101]  F F Costa,et al.  Elastic properties of irradiated RBCs measured by optical tweezers , 2002, Transfusion.

[102]  Jochen Guck,et al.  Stretching biological cells with light , 2002 .

[103]  L. D. Da Costa,et al.  Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. , 2013, Blood reviews.

[104]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[105]  T. McConnell,et al.  Activation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy. , 2005, Journal of immunological methods.

[106]  Samarendra K. Mohanty,et al.  Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis , 2004, Biotechnology Letters.

[107]  Adriana Fontes,et al.  Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements , 2016, Journal of biomedical optics.

[108]  B. Anvari,et al.  Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers. , 2004, Journal of biomedical optics.

[109]  H. Langer,et al.  Leukocyte – endothelial interactions in inflammation , 2009, Journal of cellular and molecular medicine.

[110]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[111]  S. Balint,et al.  Polarization Raman study of protein ordering by controllable RBC deformation , 2009 .

[112]  B. Saccà,et al.  Sites of high local frustration in DNA origami , 2019, Nature Communications.

[113]  J. Salter The effect of radiation trapping of high intensity scattered radiation on multiphonon ionisation rates and resonance fluorescence , 1979 .

[114]  Audy G. Whitman,et al.  Raman spectroscopy: the gateway into tomorrow's virology , 2006, Virology Journal.

[115]  Lasse Evensen,et al.  Optical micromanipulation of nanoparticles and cells inside living zebrafish , 2016, Nature Communications.

[116]  H Minamitani,et al.  Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system. , 2001, Microvascular research.

[117]  Subra Suresh,et al.  Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease , 2010, MRS bulletin.

[118]  M. Platt,et al.  Sickle cell biomechanics. , 2010, Annual review of biomedical engineering.

[119]  J. Guck,et al.  Mechanical deformation induces depolarization of neutrophils , 2017, Science Advances.

[120]  Christoph F. Schmidt,et al.  Conformation and elasticity of the isolated red blood cell membrane skeleton. , 1992, Biophysical journal.

[121]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[122]  G. Wuite,et al.  Introduction to optical tweezers: background, system designs, and commercial solutions. , 2011, Methods in molecular biology.

[123]  Sehyun Shin,et al.  Advances in the measurement of red blood cell deformability: A brief review , 2015 .

[124]  Diógenes S. Moura,et al.  Evaluating viscoelastic properties and membrane electrical charges of red blood cells with optical tweezers and cationic quantum dots - applications to β-thalassemia intermedia hemoglobinopathy. , 2019, Colloids and surfaces. B, Biointerfaces.

[125]  Carlos Lenz Cesar,et al.  Electrical properties of the red blood cell membrane and immunohematological investigation , 2011, Revista brasileira de hematologia e hemoterapia.

[126]  Kishan Dholakia,et al.  Light-induced cell separation in a tailored optical landscape , 2005 .

[127]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[128]  Anna Bezryadina,et al.  Manipulation and Assessment of Human Red Blood Cells with Tunable “Tug-of-War” Optical Tweezers , 2019 .

[129]  M. Lekka,et al.  Rheological properties of erythrocytes in patients with high risk of cardiovascular disease. , 2008, Clinical hemorheology and microcirculation.

[130]  T. Imasaka,et al.  Theory of optical chromatography. , 1997, Analytical chemistry.

[131]  J. Käs,et al.  Optical deformability of soft biological dielectrics. , 2000, Physical review letters.

[132]  Danny Bluestein,et al.  High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions , 2010, Annals of Biomedical Engineering.

[133]  Erich Hoover,et al.  Cell deformation cytometry using diode-bar optical stretchers. , 2010, Journal of biomedical optics.

[134]  E. Reinherz,et al.  αβ T Cell Receptor Mechanosensing Forces out Serial Engagement , 2018, Trends in immunology.

[135]  Maria Grazia Donato,et al.  Optical tweezers and their applications , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[136]  Dobryna Zalvidea,et al.  Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope. , 2009, The Review of scientific instruments.

[137]  Hyungsuk Lee,et al.  Optical trapping for undergraduates , 2007 .

[138]  Yuchao Li,et al.  Rotation and deformation of human red blood cells with light from tapered fiber probes , 2017 .

[139]  James J. Feng,et al.  How malaria parasites reduce the deformability of infected red blood cells. , 2012, Biophysical journal.

[140]  C P Grover,et al.  Automated single-cell sorting system based on optical trapping. , 2001, Journal of biomedical optics.

[141]  J. Lock Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. , 2004, Applied optics.

[142]  N. Mohandas,et al.  Red cell membrane: past, present, and future. , 2008, Blood.

[143]  Maria D Khokhlova,et al.  Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces. , 2012, Journal of biomedical optics.

[144]  Michael Liebling,et al.  Pulse propagation by a capacitive mechanism drives embryonic blood flow , 2013, Development.

[145]  C. J. Firby,et al.  Design of a simple, low-cost, computer-controlled, dual-beam optical tweezer system , 2016 .

[146]  S. Harlepp,et al.  Hemodynamic forces can be accurately measured in vivo with optical tweezers , 2017, bioRxiv.

[147]  R. S. Verma,et al.  Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells. , 2014, Journal of biomedical optics.

[148]  D. Brooks Mechanism of Red Cell Aggregation , 1988 .

[149]  Kuo-Kang Liu,et al.  Optical tweezers for single cells , 2008, Journal of The Royal Society Interface.

[150]  Herbert J Meiselman,et al.  Red blood cell aggregation: 45 years being curious. , 2009, Biorheology.

[151]  H. P. Fernandes,et al.  Measuring red blood cell aggregation forces using double optical tweezers , 2013, Scandinavian journal of clinical and laboratory investigation.

[152]  Igor Meglinski,et al.  Mutual interaction of red blood cells influenced by nanoparticles , 2019, Scientific Reports.

[153]  Praveen Parthasarathi,et al.  Birefringence of a normal human red blood cell and related optomechanics in an optical trap , 2014, Journal of biomedical optics.

[154]  G. J. Brakenhoff,et al.  A NEW METHOD TO STUDY SHAPE RECOVERY OF RED BLOOD CELLS USING MULTIPLE OPTICAL TRAPPING , 1995 .

[155]  M W Berns,et al.  Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. , 1995, Optics letters.

[156]  H. P. Fernandes,et al.  Optical Tweezers as a New Biomedical Tool to Measure Zeta Potential of Stored Red Blood Cells , 2012, PloS one.

[157]  Igor Meglinski,et al.  Impact of Nanocapsules on Red Blood Cells Interplay Jointly Assessed by Optical Tweezers and Microscopy , 2019, Micromachines.

[158]  Joshua W Shaevitz,et al.  Introduction to Optical Tweezers. , 2017, Methods in molecular biology.

[159]  N. Mohandas,et al.  Analysis of factors regulating erythrocyte deformability. , 1980, The Journal of clinical investigation.

[160]  Steven M Block,et al.  Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.

[161]  Nataliya R. Rovnyagina,et al.  Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics. , 2018, Biomedical optics express.

[162]  K. Toth,et al.  Plasma viscosity: a forgotten variable. , 2008, Clinical hemorheology and microcirculation.

[163]  Chia-Wei Sun,et al.  Correlation between tissue oxygenation and erythrocytes elasticity , 2011, Journal of biophotonics.

[164]  F F Costa,et al.  Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease , 2003, European journal of haematology.

[165]  Ethan K. Scott,et al.  Optical trapping in vivo: theory, practice, and applications , 2019, Nanophotonics.

[166]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[167]  Rance Solomon,et al.  Direct laser trapping for measuring the behavior of transfused erythrocytes in a sickle cell anemia patient , 2012, Biomedical optics express.

[168]  M. Kinnunen,et al.  Probing the Red Blood Cells Aggregating Force With Optical Tweezers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[169]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[170]  R. Gauthier,et al.  Analysis of the behaviour of erythrocytes in an optical trapping system. , 2000, Optics express.

[171]  Kishan Dholakia,et al.  Construction and calibration of an optical trap on a fluorescence optical microscope , 2007, Nature Protocols.

[172]  Kuo-Kang Liu,et al.  The deformation of an erythrocyte under the radiation pressure by optical stretch. , 2006, Journal of biomechanical engineering.

[173]  Bor-Wen Yang,et al.  Measuring micro-interactions between coagulating red blood cells using optical tweezers , 2010, Biomedical optics express.

[174]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .