Magnetization‐prepared shells trajectory with automated gradient waveform design

To develop a fully automated trajectory and gradient waveform design for the non‐Cartesian shells acquisition, and to develop a magnetization‐prepared (MP) shells acquisition to achieve an efficient three‐dimensional acquisition with improved gray‐to‐white brain matter contrast.

[1]  F Träber,et al.  Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. , 2007, AJNR. American journal of neuroradiology.

[2]  Clifford R. Jack,et al.  Alliance for Aging Research AD Biomarkers Work Group: structural MRI , 2011, Neurobiology of Aging.

[3]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yunhong Shu,et al.  NonCartesian MR image reconstruction with integrated gradient nonlinearity correction. , 2015, Medical physics.

[5]  Y Shu,et al.  WE-FG-206-01: Magnetization-Prepared Shells Trajectory with Automated Gradient Waveform Design. , 2016, Medical physics.

[6]  Chen Lin,et al.  3D magnetization prepared elliptical centric fast gradient echo imaging , 2008, Magnetic resonance in medicine.

[7]  J. Duncan,et al.  Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder , 2016, Neuroreport.

[8]  D. Sodickson,et al.  Comprehensive quantification of signal‐to‐noise ratio and g‐factor for image‐based and k‐space‐based parallel imaging reconstructions , 2008, Magnetic resonance in medicine.

[9]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[10]  R. Woods,et al.  Glutamate normalization with ECT treatment response in major depression , 2013, Molecular Psychiatry.

[11]  Yunhong Shu,et al.  Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction , 2016, Magnetic resonance in medicine.

[12]  J. Pipe Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging , 1999, Magnetic resonance in medicine.

[13]  Yunhong Shu,et al.  Three‐dimensional MRI with an undersampled spherical shells trajectory , 2006, Magnetic resonance in medicine.

[14]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[15]  Dwight G Nishimura,et al.  MRI using a concentric rings trajectory , 2008, Magnetic resonance in medicine.

[16]  S J Riederer,et al.  Theoretical limits of spatial resolution in elliptical‐centric contrast‐enhanced 3D‐MRA , 1999, Magnetic resonance in medicine.

[17]  Elfar Adalsteinsson,et al.  Simple analytic variable density spiral design , 2003, Magnetic resonance in medicine.

[18]  Jeffrey A. Fessler,et al.  Regularized fieldmap estimation in MRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[19]  Zhi-Pei Liang,et al.  Variable slew‐rate spiral design: Theory and application to peak B1 amplitude reduction in 2D RF pulse design , 2007, Magnetic resonance in medicine.

[20]  Boris C. Bernhardt,et al.  Advances in MRI for 'cryptogenic' epilepsies , 2011, Nature Reviews Neurology.

[21]  Matt A. Bernstein,et al.  Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array , 2016, Magnetic resonance in medicine.

[22]  Jeff D Winter,et al.  Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T. , 2007, Magnetic resonance imaging.

[23]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[24]  James G Pipe,et al.  Distributed spirals: A new class of three‐dimensional k‐space trajectories , 2013, Magnetic resonance in medicine.

[25]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[26]  Stephen J Riederer,et al.  3D high temporal and spatial resolution contrast‐enhanced MR angiography of the whole brain , 2008, Magnetic resonance in medicine.

[27]  D. Nishimura,et al.  Reduced aliasing artifacts using variable‐density k‐space sampling trajectories , 2000, Magnetic resonance in medicine.

[28]  Craig H Meyer,et al.  Estimation of k‐space trajectories in spiral MRI , 2009, Magnetic resonance in medicine.

[29]  Dwight G. Nishimura,et al.  Rapid gridding reconstruction with a minimal oversampling ratio , 2005, IEEE Transactions on Medical Imaging.

[30]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[31]  J. Pipe,et al.  Sampling density compensation in MRI: Rationale and an iterative numerical solution , 1999, Magnetic resonance in medicine.

[32]  Matt A. Bernstein,et al.  Comparison of accelerated T1-weighted whole-brain structural-imaging protocols , 2016, NeuroImage.

[33]  Walter F Block,et al.  Characterizing and correcting gradient errors in non‐cartesian imaging: Are gradient errors linear time‐invariant (LTI)? , 2009, Magnetic resonance in medicine.

[34]  Nicholas R Zwart,et al.  Spiral trajectory design: A flexible numerical algorithm and base analytical equations , 2014, Magnetic resonance in medicine.

[35]  C. Crawford,et al.  Optimized gradient waveforms for spiral scanning , 1995, Magnetic resonance in medicine.

[36]  G. Glover,et al.  Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts , 2001, Magnetic resonance in medicine.

[37]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[38]  Walter F Block,et al.  Time‐resolved contrast‐enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory , 2002, Magnetic resonance in medicine.

[39]  Matt A. Bernstein,et al.  Contrast‐enhanced intracranial magnetic resonance angiography with a spherical shells trajectory and online gridding reconstruction , 2009, Journal of magnetic resonance imaging : JMRI.

[40]  Benjamin Zahneisen,et al.  SENSE and simultaneous multislice imaging , 2015, Magnetic resonance in medicine.

[41]  Maxim Zaitsev,et al.  Single shot concentric shells trajectories for ultra fast fMRI , 2012, Magnetic resonance in medicine.

[42]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[43]  Seung-Jean Kim,et al.  A fast method for designing time-optimal gradient waveforms for arbitrary k-space trajectories , 2008, IEEE Transactions on Medical Imaging.

[44]  D. Nishimura,et al.  Fast Three Dimensional Magnetic Resonance Imaging , 1995, Magnetic resonance in medicine.

[45]  Manojkumar Saranathan,et al.  DIfferential subsampling with cartesian ordering (DISCO): A high spatio‐temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging , 2012, Journal of magnetic resonance imaging : JMRI.

[46]  J. Pauly,et al.  A homogeneity correction method for magnetic resonance imaging with time-varying gradients. , 1991, IEEE transactions on medical imaging.

[47]  Dwight G Nishimura,et al.  Design and analysis of a practical 3D cones trajectory , 2006, Magnetic resonance in medicine.

[48]  Lars Kasper,et al.  A field camera for MR sequence monitoring and system analysis , 2016, Magnetic resonance in medicine.

[49]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[50]  Massimo Filippi,et al.  Neuroanatomical correlates of depression and apathy in Parkinson's disease: Magnetic resonance imaging studies , 2011, Journal of the Neurological Sciences.

[51]  Frederik Barkhof,et al.  Global and Regional Differences in Brain Anatomy of Young Children Born Small for Gestational Age , 2011, PloS one.