A Cheeger type inequality in finite Cayley sum graphs

Let $G$ be a finite group and $S$ be a symmetric generating set of $G$ with $|S| = d$. We show that if the undirected Cayley sum graph $C_{\Sigma}(G,S)$ is an expander graph and is non-bipartite, then the spectrum of its normalised adjacency operator is bounded away from $-1$. We also establish an explicit lower bound for the spectrum of these graphs, namely, the non-trivial eigenvalues of the normalised adjacency operator lies in the interval $\left(-1+\frac{h(G)^{4}}{\eta}, 1-\frac{h(G)^{2}}{2d^{2}}\right]$, where $h(G)$ denotes the (vertex) Cheeger constant of the $d$-regular graph $C_{\Sigma}(G,S)$ and $\eta = 2^{9}d^{8}$. Further, we improve upon a recently obtained bound on the non-trivial spectrum of the normalised adjacency operator of the Cayley graph $C(G,S)$.

[1]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[2]  Rudi Mrazovic,et al.  Extractors in Paley graphs: A random model , 2015, Eur. J. Comb..

[3]  Shmuel Friedland,et al.  Lower bounds for the first eigenvalue of certain M-matrices associated with graphs , 1992 .

[4]  Vsevolod F. Lev,et al.  The Connectivity of addition Cayley graphs , 2007, Electron. Notes Discret. Math..

[5]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[6]  T. Tao,et al.  Expansion in finite simple groups of Lie type , 2013, 1309.1975.

[7]  Noga Alon The chromatic number of random Cayley graphs , 2013, Eur. J. Comb..

[8]  Ilya D. Shkredov,et al.  On subgraphs of random Cayley sum graphs , 2018, Eur. J. Comb..

[9]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[10]  Kaishun Wang,et al.  Subgroup perfect codes in Cayley sum graphs , 2020, Des. Codes Cryptogr..

[11]  Arindam Biswas,et al.  On a Cheeger type inequality in Cayley graphs of finite groups , 2018, Eur. J. Comb..

[12]  Robert Sámal,et al.  Cayley sum graphs and eigenvalues of (3, 6)-fullerenes , 2007, J. Comb. Theory, Ser. B.

[13]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[14]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[15]  Ben Green,et al.  On the Chromatic Number of Random Cayley Graphs , 2013, Combinatorics, Probability and Computing.

[16]  Ben Green Counting Sets With Small Sumset, And The Clique Number Of Random Cayley Graphs , 2005, Comb..

[17]  Ben Green,et al.  Counting sets with small sumset and applications , 2013, Comb..

[18]  F. Chung Diameters and eigenvalues , 1989 .

[19]  P. Buser A note on the isoperimetric constant , 1982 .