Non-uniform interpolatory subdivision surface
暂无分享,去创建一个
Xin Li | Yubo Chang | Xin Li | Yubo Chang
[1] Hujun Bao,et al. Interpolatory v2-Subdivision Surfaces , 2004, GMP.
[2] Carolina Vittoria Beccari,et al. Non-uniform non-tensor product local interpolatory subdivision surfaces , 2013, Comput. Aided Geom. Des..
[3] Zhongxuan Luo,et al. On interpolatory subdivision from approximating subdivision scheme , 2013, Appl. Math. Comput..
[4] Weiyin Ma,et al. Constructing an Interpolatory Subdivision Scheme from Doo-Sabin Subdivision , 2011, 2011 12th International Conference on Computer-Aided Design and Computer Graphics.
[5] Carolina Vittoria Beccari,et al. A unified framework for interpolating and approximating univariate subdivision , 2010, Appl. Math. Comput..
[6] Luiz Velho,et al. Quasi 4-8 subdivision , 2001, Comput. Aided Geom. Des..
[7] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[8] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[9] Nira Dyn,et al. Four-point curve subdivision based on iterated chordal and centripetal parameterizations , 2009, Comput. Aided Geom. Des..
[10] E. T. Y. Lee,et al. Choosing nodes in parametric curve interpolation , 1989 .
[11] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[12] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[13] Jörg Peters,et al. Combining 4- and 3-direction subdivision , 2004, ACM Trans. Graph..
[14] M. Sabin,et al. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.
[15] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[16] G. Casciola,et al. Non-uniform interpolatory curve subdivision with edge parameters built upon compactly supported fundamental splines , 2011 .
[17] Jianmin Zheng,et al. Making Doo-Sabin surface interpolation always work over irregular meshes , 2005, The Visual Computer.
[18] Rong-Qing Jia,et al. Interpolatory Subdivision Schemes Induced by Box Splines , 2000 .
[19] Jianmin Zheng,et al. An alternative method for constructing interpolatory subdivision from approximating subdivision , 2012, Comput. Aided Geom. Des..
[20] Michael S. Floater. On the deviation of a parametric cubic spline interpolant from its data polygon , 2008, Comput. Aided Geom. Des..
[21] Hans Hagen,et al. Dinus: Double insertion, nonuniform, stationary subdivision surfaces , 2010, TOGS.
[22] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[23] Xunnian Yang,et al. A simple method for interpolating meshes of arbitrary topology by Catmull–Clark surfaces , 2010, The Visual Computer.
[24] Jianmin Zheng,et al. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme , 2006, IEEE Transactions on Visualization and Computer Graphics.
[25] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[26] Lucia Romani,et al. A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines , 2013, Adv. Comput. Math..
[27] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[28] Lucia Romani,et al. From approximating to interpolatory non-stationary subdivision schemes with the same generation properties , 2010, Adv. Comput. Math..
[29] Weiyin Ma,et al. A Method for Constructing Interpolatory Subdivision Schemes and Blending Subdivisions , 2007, Comput. Graph. Forum.
[30] D.W. Fellner,et al. Isogeometric shell analysis with NURBS compatible subdivision surfaces , 2016, Appl. Math. Comput..
[31] Zhangjin Huang,et al. Non-uniform recursive Doo-Sabin surfaces , 2011, Comput. Aided Des..
[32] D. Zorin,et al. 4-8 Subdivision , 2001 .
[33] Xiaonan Luo,et al. Deducing interpolating subdivision schemes from approximating subdivision schemes , 2008, SIGGRAPH 2008.
[34] Ahmad H. Nasri,et al. Polyhedral subdivision methods for free-form surfaces , 1987, TOGS.
[35] Lucia Romani. From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .
[36] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[37] Weiyin Ma,et al. A unified interpolatory subdivision scheme for quadrilateral meshes , 2013, TOGS.
[38] Thomas W. Sederberg,et al. G1 non-uniform Catmull-Clark surfaces , 2016, ACM Trans. Graph..
[39] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[40] Neil A. Dodgson,et al. Semi‐sharp Creases on Subdivision Curves and Surfaces , 2014, Comput. Graph. Forum.
[41] E. Kuznetsov,et al. The best parameterization for parametric interpolation , 2006 .
[42] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[43] Lucia Romani,et al. From symmetric subdivision masks of Hurwitz type to interpolatory subdivision masks , 2009 .
[44] Jos Stam,et al. A Unified Subdivision Scheme for Polygonal Modeling , 2001, Comput. Graph. Forum.
[45] Gudrun Albrecht,et al. Convexity preserving interpolatory subdivision with conic precision , 2012, Appl. Math. Comput..
[46] Cem Yuksel,et al. On the parameterization of Catmull-Rom curves , 2009, Symposium on Solid and Physical Modeling.
[47] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[48] Carolina Vittoria Beccari,et al. Polynomial-based non-uniform interpolatory subdivision with features control , 2011, J. Comput. Appl. Math..
[49] Dieter W. Fellner,et al. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.
[50] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..