The pheromone response pathway in Saccharomyces cerevisiae.

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 OVERVIEW OF PATHWAY . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . 149 Pheromones . . . . . . ... ... . .. . . .... . . . . ..... . . . . . .. . . . . . . 149 Pheromone Receptors . . . .... . . . . . . .. . . . . . . . . . . . . . . . . ISO G Protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1 Kinases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SteJ2p Transcription Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Inhibition of Gl CyclinlCdc28 Kinase Leads to Cell Cycle Arrest . . . . . . . . . 154 Recovery and Desensitizatiofl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISS IDENTIRCATION OF EFFECTOR CANDIDATES . . . . . . . . . . . . . . . . . . . . ISS MAP KINASE CASCADE . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 159 Action and Order of Kinases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 59 Heterologous MAP Kinase Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 . FUflctional Conservation of MAP Kinase Cascade Componeflls . . . . . . . . . . . 167 Other MAP Kinase Cascades in S. cerevisiae . . . . . . . . . . . .. . . . . . . . . . 168 CELL CYCLE ARREST . . . .. . . . . .. . ... .. ... . . . .. ... . .. . .. . .. 170 DOES CALCINEURIN PLAY A ROLE IN RECOVERY? . . . . . . . . . . . . . . . . 1 7 1 PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

[1]  Gustav Ammerer,et al.  FAR1 links the signal transduction pathway to the cell cycle machinery in yeast , 1993, Cell.

[2]  K. Irie,et al.  MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C , 1993, Molecular and cellular biology.

[3]  C. Lange-Carter,et al.  A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf , 1993, Science.

[4]  B. Errede,et al.  A conserved kinase cascade for MAP kinase activation in yeast. , 1993, Current opinion in cell biology.

[5]  E. Winter,et al.  An osmosensing signal transduction pathway in yeast. , 1993, Science.

[6]  K. Clark,et al.  Interactions among the subunits of the G protein involved in Saccharomyces cerevisiae mating , 1993, Molecular and cellular biology.

[7]  T. M. Roberts A signal chain of events , 1992, Nature.

[8]  M. Whiteway,et al.  The protein kinase homologue Ste20p is required to link the yeast pheromone response G‐protein beta gamma subunits to downstream signalling components. , 1992, The EMBO journal.

[9]  R. W. Davis,et al.  Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Whiteway,et al.  Dominant‐negative mutants of a yeast G‐protein beta subunit identify two functional regions involved in pheromone signalling. , 1992, The EMBO journal.

[11]  C. Crews,et al.  The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. , 1992, Science.

[12]  B. Errede,et al.  Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. , 1992, Genes & development.

[13]  B. Cairns,et al.  Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. , 1992, Genes & development.

[14]  S. Pelech,et al.  Mitogen-activated protein kinases: versatile transducers for cell signaling. , 1992, Trends in biochemical sciences.

[15]  A. Bretscher,et al.  Identification and molecular characterization of the calmodulin‐binding subunit gene (CMP1) of protein phosphatase 2B from Saccharomyces cerevisiae , 1992 .

[16]  D. E. Levin,et al.  Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog , 1992, Molecular and cellular biology.

[17]  R. Trumbly,et al.  The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. , 1991, The Journal of biological chemistry.

[18]  Oshima Yasuji,et al.  A new protein kinase, SSP31, modulating the SMP3 gene-product involved in plasmid maintenance in Saccharomyces cerevisiae. , 1991 .

[19]  E. Winter,et al.  Tyrosine phosphorylation of a yeast 40 kDa protein occurs in response to mating pheromone. , 1991, The EMBO journal.

[20]  T. Kuno,et al.  cDNA cloning of a calcineurin B homolog in Saccharomyces cerevisiae. , 1991, Biochemical and biophysical research communications.

[21]  M. Cyert,et al.  Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kim Nasmyth,et al.  Positive feedback in the activation of Gl cyclins in yeast , 1991, Nature.

[23]  F. Cross,et al.  A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle , 1991, Cell.

[24]  J. Hirsch,et al.  Mutations in the guanine nucleotide-binding domains of a yeast G alpha protein confer a constitutive or uninducible state to the pheromone response pathway. , 1991, Genes & development.

[25]  S. Reed,et al.  Pheromone-induced phosphorylation of a G protein β subunit in S. cerevisiae is associated with an adaptive response to mating pheromone , 1991, Cell.

[26]  J. Becker,et al.  Degradation of a-factor by a Saccharomyces cerevisiae alpha-mating-type-specific endopeptidase: evidence for a role in recovery of cells from G1 arrest , 1991, Molecular and cellular biology.

[27]  Y. Anraku,et al.  Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. , 1990, The Journal of biological chemistry.

[28]  Stanley Fields,et al.  Phermone response in yeast , 1990 .

[29]  J. Thorner,et al.  Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Arai,et al.  Regulation of the yeast pheromone response pathway by G protein subunits. , 1990, The EMBO journal.

[31]  G. Fink,et al.  FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation , 1990, Cell.

[32]  M. Whiteway,et al.  Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae , 1990, Molecular and cellular biology.

[33]  Curt Wittenberg,et al.  An essential G1 function for cyclin-like proteins in yeast , 1989, Cell.

[34]  J. Thorner,et al.  Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. , 1989, The EMBO journal.

[35]  B. Errede,et al.  STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. , 1989, Genes & development.

[36]  A. Varshavsky,et al.  The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein , 1989, Nature.

[37]  David Y. Thomas,et al.  The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein , 1989, Cell.

[38]  S. Bouvier,et al.  Constitutive mutants in the yeast pheromone response: Ordered function of the gene products , 1989, Cell.

[39]  J. Thorner,et al.  The carboxy-terminal segment of the yeast α-factor receptor is a regulatory domain , 1988, Cell.

[40]  S. Reed,et al.  Mutations in a gene encoding the alpha subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling , 1988, Molecular and cellular biology.

[41]  A. Nasim,et al.  A gene which encodes a predicted protein kinase can restore some functions of the ras gene in fission yeast. , 1988, The EMBO journal.

[42]  I. Herskowitz,et al.  The a-factor pheromone of Saccharomyces cerevisiae is essential for mating , 1988, Molecular and cellular biology.

[43]  J. Kurjan,et al.  Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. , 1987, Molecular and cellular biology.

[44]  J. Kurjan,et al.  The yeast SCG1 gene: A Gα-like protein implicated in the a- and α-factor response pathway , 1987, Cell.

[45]  K. Arai,et al.  GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction , 1987, Cell.

[46]  J. Polazzi,et al.  Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predicted polypeptide to protein kinases. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[47]  V. Mackay,et al.  A yeast operator overlaps an upstream activation site , 1987, Cell.

[48]  K. Arai,et al.  Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autocrine cell‐cycle arrest results from forced expression of STE2 , 1987, The EMBO journal.

[49]  G. Sprague,,et al.  Yeast peptide pheromones, a-factor and α-factor, activate a common response mechanism in their target cells , 1986, Cell.

[50]  B. Errede,et al.  Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Sprague,,et al.  Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Leland H. Hartwell,et al.  The yeast α-factor receptor: structural properties deduced from the sequence of the STE2 gene , 1985 .

[53]  K. Arai,et al.  Nucleotide sequences of STE2 and STE3, cell type‐specific sterile genes from Saccharomyces cerevisiae , 1985, The EMBO journal.

[54]  J. Kurjan,et al.  Alpha-factor structural gene mutations in Saccharomyces cerevisiae: effects on alpha-factor production and mating , 1985, Molecular and cellular biology.

[55]  T. Manney,et al.  Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha mating pheromone of an activity associated with a secreted protein , 1983, Journal of bacteriology.

[56]  I. Herskowitz,et al.  Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor , 1982, Cell.

[57]  L. Hartwell Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone , 1980, The Journal of cell biology.

[58]  M. Hagiya,et al.  The release of sex-specific substances responsible for sexual agglutination from haploid cells of Saccharomyces cerevisiae. , 1977, Experimental cell research.

[59]  W. Duntze,et al.  Primary Structure of α‐Factor Peptides from Saccharomyces cerevisiae , 1976 .

[60]  P. Lipke,et al.  Morphogenic effects of alpha-factor on Saccharomyces cerevisiae a cells , 1976, Journal of bacteriology.

[61]  H. Michel,et al.  Molecular structure of a protein-tyrosine/threonine kinase activating p42 mitogen-activated protein (MAP) kinase: MAP kinase kinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Kurjan Pheromone response in yeast. , 1992, Annual review of biochemistry.

[63]  S. Hanks,et al.  Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. , 1991, Methods in enzymology.

[64]  G. Fink,et al.  Functional redundancy in the yeast cell cycle: FUS3 and KSS1 have both overlapping and unique functions. , 1991, Cold Spring Harbor symposia on quantitative biology.

[65]  T. Toda,et al.  Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. , 1991, Genes & development.

[66]  K. Clark,et al.  Response of yeast alpha cells to a-factor pheromone: topology of the receptor and identification of a component of the response pathway. , 1988, Cold Spring Harbor symposia on quantitative biology.

[67]  G. Saari,et al.  The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[68]  L. Hartwell,et al.  Reversible arrest of haploid yeast cells in the initiation of DNA synthesis by a diffusible sex factor. , 1973, Experimental cell research.