Tera-scale Astronomical Data Analysis and Visualization

We present a high-performance, graphics processing unit (GPU)-based framework for the ecient analysis and visualization of (nearly) terabyte (TB)-sized 3-dimensional images. Using a cluster of 96 GPUs, we demonstrate for a 0.5 TB image: (1) volume rendering using an arbitrary transfer function at 7{10 frames per second; (2) computation of basic global image statistics such as the mean intensity and standard deviation in 1.7 s; (3) evaluation of the image histogram in 4 s; and (4) evaluation of the global image median intensity in just 45 s. Our measured results correspond to a raw computational throughput approaching one teravoxel per second, and are 10{100 times faster than the best possible performance with traditional single-node, multi-core CPU implementations. A scalability analysis shows the framework will scale well to images sized 1 TB and beyond. Other parallel data analysis algorithms can be added to the framework with relative ease, and accordingly, we present our framework as a possible solution to the image analysis and visualization requirements of nextgeneration telescopes, including the forthcoming Square Kilometre Array pathnder radiotelescopes.

[1]  A. Hopkins,et al.  Science with ASKAP , 2008, 0810.5187.

[2]  C. A. R. Hoare,et al.  Algorithm 64: Quicksort , 1961, Commun. ACM.

[3]  E. al.,et al.  The HIPASS catalogue - I. Data presentation , 2004, astro-ph/0406384.

[4]  Christopher J. Fluke,et al.  Visualisation and Analysis Challenges for WALLABY , 2010, 2010 Sixth IEEE International Conference on e-Science Workshops.

[5]  Christopher J. Fluke,et al.  Accelerating the Rate of Astronomical Discovery with GPU-Powered Clusters , 2011, 1111.5081.

[6]  A. Saintonge The Arecibo Legacy Fast ALFA Survey. IV. Strategies for Signal Identification and Survey Catalog Reliability , 2007, astro-ph/0702178.

[7]  Matthew T. Whiting,et al.  duchamp: a 3D source finder for spectral‐line data , 2012, 1201.2710.

[8]  Andrey N. Belikov,et al.  The data zoo in Astro-WISE , 2012, 1208.6299.

[9]  B. Gibson,et al.  GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE , 2009, 0901.1159.

[10]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[11]  B. Koribalski,et al.  Overview on Spectral Line Source Finding and Visualisation , 2012, Publications of the Astronomical Society of Australia.

[12]  Christopher J. Fluke,et al.  Interactive Visualization of the Largest Radioastronomy Cubes , 2010, ArXiv.

[13]  Justin L. Jonas,et al.  MeerKAT—The South African Array With Composite Dishes and Wide-Band Single Pixel Feeds , 2009, Proceedings of the IEEE.

[14]  Cameron Kiddle,et al.  CyberSKA: an on-line collaborative portal for data-intensive radio astronomy , 2011, GCE '11.

[15]  M. Dopita,et al.  A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined , 2003, astro-ph/0506224.

[16]  Christopher J. Fluke,et al.  Analysing Astronomy Algorithms for GPUs and Beyond , 2010, ArXiv.

[17]  Christopher J. Fluke,et al.  Scientific Visualization in Astronomy: Towards the Petascale Astronomy Era , 2011, Publications of the Astronomical Society of Australia.

[18]  C. A. R. Hoare Algorithm 63: partition , 1961, CACM.