Determining the significance of flotation variables on froth rheology using a central composite rotatable design

[1]  S. Farrokhpay,et al.  A novel approach to measure froth rheology in flotation , 2015 .

[2]  Ashish Kumar,et al.  The effect of premature wall yield on creep testing of strongly flocculated suspensions , 2014, Rheologica Acta.

[3]  Dee Bradshaw,et al.  A critical analysis of froth transportation models in flotation , 2014 .

[4]  T. J. Napier-Munn,et al.  Statistical methods for mineral engineers - How to design experiments and analyse data , 2014 .

[5]  Juan Yianatos,et al.  On the froth transport modelling in industrial flotation cells , 2013 .

[6]  S. Farrokhpay The importance of rheology in mineral flotation: a review , 2012 .

[7]  Graeme J. Jameson,et al.  The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp , 2012 .

[8]  N. Wagner,et al.  Colloidal Suspension Rheology: Frontmatter , 2011 .

[9]  S. Farrokhpay The significance of froth stability in mineral flotation--a review. , 2011, Advances in colloid and interface science.

[10]  Brahmeshwar Mishra,et al.  Modeling of viscosity for power plant ash slurry at higher concentrations: Effect of solids volume fraction, particle size and hydrodynamic interactions , 2010 .

[11]  Sameer H. Morar The use of machine vision to describe and evaluate froth phase behaviour and performance in mineral flotation systems , 2010 .

[12]  Stephen J. Neethling,et al.  The entrainment factor in froth flotation: Model for particle size and other operating parameter effects , 2009 .

[13]  J. Wassink,et al.  The flow properties of foam , 2008 .

[14]  John Ralston,et al.  Reducing uncertainty in mineral flotation—flotation rate constant prediction for particles in an operating plant ore , 2007 .

[15]  Emmanuel Manlapig,et al.  Selective transport of attached particles across the pulp-froth interface , 2006 .

[16]  R. Höhler,et al.  Rheology of liquid foam , 2005 .

[17]  Timothy J. Napier-Munn,et al.  Application of central composite rotatable design to modelling the effect of some operating variables on the performance of the three-product cyclone , 2005 .

[18]  Emmanuel Manlapig,et al.  Modelling of froth transportation in industrial flotation cells: Part I. Development of froth transportation models for attached particles , 2004 .

[19]  G. Atesok,et al.  Effect of coal particle size distribution, volume fraction and rank on the rheology of coal–water slurries , 2004 .

[20]  J. Ferreira,et al.  Influence of particle size distribution on rheology and particle packing of silica-based suspensions , 2004 .

[21]  G. Jameson,et al.  A study of bubble coalescence in flotation froths , 2003 .

[22]  Fengnian Shi,et al.  The rheology of flotation froths , 2003 .

[23]  Stephen J. Neethling,et al.  Simulation of the effect of froth washing on flotation performance , 2001 .

[24]  P. Scales,et al.  Chemical and physical control of the rheology of concentrated metal oxide suspensions , 2001 .

[25]  Gerald H. Luttrell,et al.  A parametric study of froth stability and its effect on column flotation of fine particles , 2000 .

[26]  Fengnian Shi,et al.  Estimation of shear rates inside a ball mill , 1999 .

[27]  Chris Aldrich,et al.  The significance of flotation froth appearance for machine vision control , 1996 .

[28]  B. Moudgil,et al.  Correlation between froth viscosity and flotation efficiency , 1993 .

[29]  G. S. Hanumanth,et al.  An experimental study of the effects of froth height on flotation of china clay , 1990 .

[30]  H. Barnes,et al.  An introduction to rheology , 1989 .

[31]  J. Ratulowski,et al.  The apparent viscosity of foams in homogeneous bead packs , 1989 .

[32]  J. R. Calvert,et al.  A rheological model for a liquid-gas foam , 1986 .

[33]  David V. Boger,et al.  Yield Stress Measurement for Concentrated Suspensions , 1983 .