Plan Optimization by Plan Rewriting

Planning by Rewriting (PbR) is a paradigm for e‐cient high-quality planning that exploits declarative plan rewriting rules and e‐cient local search techniques to transform an easy-to-generate, but possibly suboptimal, initial plan into a high-quality plan. In addition to addressing planning e‐ciency and plan quality, PbR ofiers a new anytime planning algorithm. The plan rewriting rules can be either specifled by a domain expert or automatically learned. We describe a learning approach based on comparing initial and optimal plans that produces rules competitive with manually-specifled ones. PbR is fully implemented and has been applied to several existing domains. The experimental results show that the PbR approach provides signiflcant savings in planning efiort while generating high-quality plans.

[1]  Daniel S. Weld,et al.  A Domain-Independent Algorithm for Plan Adaptation , 1994, J. Artif. Intell. Res..

[2]  Manuela M. Veloso,et al.  Lazy Incremental Learning of Control Knowledge for Efficiently Obtaining Quality Plans , 1997, Artificial Intelligence Review.

[3]  Martha E. Pollack,et al.  A Plan-Based Personalized Cognitive Orthotic , 2002, AIPS.

[4]  James A. Hendler,et al.  A Validation-Structure-Based Theory of Plan Modification and Reuse , 1992, Artif. Intell..

[5]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[6]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[7]  Craig A. Knoblock,et al.  Flexible and scalable cost-based query planning in mediators: A transformational approach , 2000, Artif. Intell..

[8]  Qiang Yang,et al.  Theory and Algorithms for Plan Merging , 1992, Artif. Intell..

[9]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[10]  Joelle Pineau,et al.  Towards robotic assistants in nursing homes: Challenges and results , 2003, Robotics Auton. Syst..

[11]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[12]  Monte Zweben,et al.  Scheduling and rescheduling with iterative repair , 1993, IEEE Trans. Syst. Man Cybern..

[13]  Dana S. Nau,et al.  On the Complexity of Blocks-World Planning , 1992, Artif. Intell..

[14]  Tara A. Estlin,et al.  Multi-Strategy Learning of Search Control for Partial-Order Planning , 1996, AAAI/IAAI, Vol. 1.

[15]  Steven Minton,et al.  Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.

[16]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[17]  Manuela M. Veloso,et al.  Planning and Learning by Analogical Reasoning , 1994, Lecture Notes in Computer Science.

[18]  Jaime G. Carbonell,et al.  Learning effective search control knowledge: an explanation-based approach , 1988 .

[19]  Steven Minton,et al.  Small is Beautiful: A Brute-Force Approach to Learning First-Order Formulas , 1994, AAAI.

[20]  Muhammad Afzal Upal Learning Plan Rewriting Rules , 2001, FLAIRS.

[21]  John K. Slaney,et al.  Linear Time Near-Optimal Planning in the Blocks World , 1996, AAAI/IAAI, Vol. 2.

[22]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[23]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[24]  Subbarao Kambhampati,et al.  Failure Driven Dynamic Search Control for Partial Order Planners: An Explanation Based Approach , 1996, Artif. Intell..

[25]  Jussi Rintanen,et al.  An Iterative Algorithm for Synthesizing Invariants , 2000, AAAI/IAAI.

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  Maria Fox,et al.  The Automatic Inference of State Invariants in TIM , 1998, J. Artif. Intell. Res..

[28]  Subbarao Kambhampati,et al.  Planning as Refinement Search: A Unified Framework for Evaluating Design Tradeoffs in Partial-Order Planning , 1995, Artif. Intell..

[29]  Craig A. Knoblock,et al.  Planning by Rewriting , 2001, J. Artif. Intell. Res..

[30]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[31]  Clement T. Yu,et al.  Distributed query processing , 1984, CSUR.

[32]  Monte Zweben,et al.  Learning to Improve Constraint-Based Scheduling , 1992, Artif. Intell..

[33]  Lenhart K. Schubert,et al.  Inferring State Constraints for Domain-Independent Planning , 1998, AAAI/IAAI.

[34]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[35]  Oren Etzioni,et al.  Acquiring Search-Control Knowledge via Static Analysis , 1993, Artif. Intell..

[36]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[37]  Heiko Dörr,et al.  Efficient Graph Rewriting and Its Implementation , 1995, Lecture Notes in Computer Science.

[38]  DepartmentBoston CollegeChestnut Hill Representing and Learning Quality-improving Search Control Knowledge , 1996 .

[39]  Gerald Jay Sussman,et al.  A Computer Model of Skill Acquisition , 1975 .

[40]  Martha E. Pollack,et al.  Autominder: an intelligent cognitive orthotic system for people with memory impairment , 2003, Robotics Auton. Syst..

[41]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[42]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[43]  Oren Etzioni,et al.  A softbot-based interface to the Internet , 1994, CACM.

[44]  James A. Hendler,et al.  UMCP: A sound and complete planning procedure for hierarchical task-network planning , 1994 .

[45]  Tara A. Estlin,et al.  Learning to Improve both Efficiency and Quality of Planning , 1997, IJCAI.

[46]  Jörg Hoffmann,et al.  On Reasonable and Forced Goal Orderings and their Use in an Agenda-Driven Planning Algorithm , 2000, J. Artif. Intell. Res..

[47]  Christer Bäckström Executing Parallel Plans Faster by Adding Actions , 1994, ECAI.

[48]  Bernhard Nebel,et al.  Extending Planning Graphs to an ADL Subset , 1997, ECP.

[49]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[50]  V. S. Subrahmanian,et al.  Complexity, Decidability and Undecidability Results for Domain-Independent Planning , 1995, Artif. Intell..

[51]  Wei Zhang,et al.  A Reinforcement Learning Approach to job-shop Scheduling , 1995, IJCAI.

[52]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[53]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[54]  Andy Schürr,et al.  Programmed Graph Replacement Systems , 1997, Handbook of Graph Grammars.

[55]  Craig A. Knoblock Automatically Generating Abstractions for Planning , 1994, Artif. Intell..

[56]  Bernhard Nebel,et al.  Plan Reuse Versus Plan Generation: A Theoretical and Empirical Analysis , 1995, Artif. Intell..

[57]  Satyandra K. Gupta,et al.  AI Planning Versus Manufacturing-Operation Planning: A Case Study , 1995, IJCAI.

[58]  A. Schfürr,et al.  Programmed graph replacement systems , 1997 .

[59]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[60]  Craig A. Knoblock Building a Planner for Information Gathering: A Report from the Trenches , 1996, AIPS.