Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication

TiO2, LiNb3O8, and (Ti0.65Nb0.35)O2 compounds have been observed and characterized during the fabrication of optical waveguides by Ti indiffusion in LiNbO3, performed in a flowing dry O2 atmosphere. Ti oxidizes by reacting with both O atoms of the surrounding atmosphere and of the LiNbO3 substrate. TiO2 formation is followed by LiNb3O8 and (Ti0.65Nb0.35)O2 phase growth. With further increasing in the annealing temperature the TiO2 and LiNb3O8 compounds are consumed and vanish. After 30 min at 950 °C both Y‐ and Z‐cut substrates appear covered only by a uniform and epitaxial (Ti0.65Nb0.35)O2 layer which behaves as the real source for Ti diffusion. The LiNb3O8 formation and dissolution were also observed in samples uncoated with Ti. Similar results were observed in LiNbO3 samples annealed in dry N, Ar, and static air.

[1]  J. Revelli,et al.  Chemical control of optical damage in lithium niobate , 1978 .

[2]  J. L. Jackel,et al.  Suppression of Outdiffusion in Titanium Diffused LiNbO3: A Review , 1982 .

[3]  Bor-Uei Chen,et al.  Integrated-optic spectrum analyzer(Invited Paper) , 1979 .

[4]  Chen S. Tsai,et al.  Guided-Wave Acoustooptic Bragg Modulators for Wide-Band Integrated Optic Communications and Signal Processing , 1979 .

[5]  J. Koskikallio,et al.  The Crystal Structure of LiNb3O8. , 1971 .

[6]  William K. Burns,et al.  Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides , 1979 .

[7]  M. Fukuma,et al.  Optical properties of titanium-diffused LiNbO(3) strip waveguides and their coupling-to-a-fiber characteristics. , 1980, Applied optics.

[8]  Hiroshi Iwasaki,et al.  Optical properties in titanium‐diffused LiNbO3 strip waveguides , 1978 .

[9]  H. Kogelnik Limits in integrated optics , 1981, Proceedings of the IEEE.

[10]  George Stewart,et al.  Diffusion processes in different materials for integrated optics , 1982 .

[11]  C. A. Wallace,et al.  An X‐ray cylindrical texture camera for the examination of thin films , 1975 .

[12]  L. Tsonev,et al.  Ti:LiNbO3 optical waveguides , 1981 .

[13]  M. N. Armenise,et al.  Characterization of (Ti0.65Nb0.35)O2 compound as a source for Ti diffusion during Ti:LiNbO3 optical waveguides fabrication , 1983 .

[14]  D. Botez,et al.  Components for optical communications systems: A review , 1980, Proceedings of the IEEE.

[15]  K. Sugii,et al.  A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods , 1978 .

[16]  Makoto Minakata,et al.  Two‐dimensional distribution of refractive‐index changes in Ti‐diffused LiNbO3 strip waveguides , 1979 .

[17]  M. N. Armenise,et al.  Ti Compound Formation During Ti Diffusion in LiNbO 3 , 1982 .

[18]  R. Holman,et al.  Processing and properties of diffused lithium niobate planar optical waveguides , 1980 .

[19]  V. E. Wood,et al.  Stoichiometry dependence of lithium outdiffusion in LiNbO3 , 1981 .

[20]  R. Alferness Guided-wave devices for optical communication , 1981 .

[21]  Titanium in-diffused LiNbO(3) optical waveguide fabrication. , 1979, Applied optics.

[22]  T. Pearsall,et al.  Study of titanium diffusion in lithium‐niobate low‐loss optical waveguides by x‐ray photoelectron spectroscopy , 1976 .

[23]  Juichi Noda,et al.  Electro‐optic amplitude modulation using three‐dimensional LiNbO3 waveguide fabricated by TiO2 diffusion , 1975 .