Target recognition of ladar range images using even-order Zernike moments.

Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

[1]  Jeffrey H. Shapiro,et al.  Maximum-likelihood laser radar range profiling with the expectation-maximization algorithm , 1992 .

[2]  H. Abdi,et al.  Principal component analysis , 2010 .

[3]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[4]  Alejandro Cornejo-Rodriguez,et al.  Comparative analysis of pattern reconstruction using orthogonal moments , 2007 .

[5]  A. Johnson A Representation for 3D Surface Matching , 1997 .

[6]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[8]  Alireza Khotanzad,et al.  Recognition and pose estimation of unoccluded three-dimensional objects from a two-dimensional perspective view by banks of neural networks , 1996, IEEE Trans. Neural Networks.

[9]  Zen Chen,et al.  A Zernike Moment Phase-Based Descriptor for Local Image Representation and Matching , 2010, IEEE Transactions on Image Processing.

[10]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Yiannis S. Boutalis,et al.  Pattern classification by using improved wavelet Compressed Zernike Moments , 2009, Appl. Math. Comput..

[12]  Zhengjun Liu,et al.  Target recognition for small samples of ladar range image using classifier ensembles , 2012 .

[13]  M. Teague Image analysis via the general theory of moments , 1980 .

[14]  Tao Fang,et al.  On the accuracy of image normalization by Zernike moments , 2010, Image Vis. Comput..

[15]  Bijan G. Mobasseri,et al.  Robust Through-the-Wall Radar Image Classification Using a Target-Model Alignment Procedure , 2012, IEEE Transactions on Image Processing.

[16]  Shoude Chang,et al.  Pattern recognition with generalized centroids and subcentroids. , 2005, Applied optics.

[17]  Yiannis S. Boutalis,et al.  Numerical error analysis in Zernike moments computation , 2006, Image Vis. Comput..

[18]  Degui Xiao,et al.  Gait Recognition Using Zernike Moments and BP Neural Network , 2008, 2008 IEEE International Conference on Networking, Sensing and Control.

[19]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[20]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Jeffrey H. Shapiro,et al.  Maximum-likelihood multiresolution laser radar range imaging , 1997, IEEE Trans. Image Process..

[22]  Chandan Singh,et al.  Fast and numerically stable methods for the computation of Zernike moments , 2010, Pattern Recognit..

[23]  Antonio Adán,et al.  3D scene retrieval and recognition with Depth Gradient Images , 2011, Pattern Recognit. Lett..

[24]  Leonidas J. Guibas,et al.  Probabilistic fingerprints for shapes , 2006, SGP '06.

[25]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[26]  Atilla Baskurt,et al.  Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Jeffrey H. Shapiro,et al.  Detecting objects in three-dimensional laser radar range images , 1994 .

[28]  Adrian Stern,et al.  Recognition of motion-blurred images by use of the method of moments. , 2002, Applied optics.

[29]  Ioannis Andreadis,et al.  Accurate Calculation of Image Moments , 2007, IEEE Transactions on Image Processing.

[30]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Wolfram Burgard,et al.  Robust place recognition for 3D range data based on point features , 2010, 2010 IEEE International Conference on Robotics and Automation.

[32]  Mausumi Pohit Neural network model for rotation invariant recognition of object shapes. , 2010, Applied optics.

[33]  Raveendran Paramesran,et al.  On the computational aspects of Zernike moments , 2007, Image Vis. Comput..

[34]  Qi Wang,et al.  Rotation-invariant target recognition in LADAR range imagery using model matching approach. , 2010, Optics express.