On computing minimal models

This paper addresses the problem of computing the minimal models of a given CNF propositional theory. We present two groups of algorithms. Algorithms in the first group are efficient when the theory is almost Horn, that is, when there are few non-Horn clauses and/or when the set of all literals that appear positive in any non-Horn clause is small. Algorithms in the other group are efficient when the theory can be represented as an acyclic network of low-arity relations. Our algorithms suggest several characterizations of tractable subsets for the problem of finding minimal models.

[1]  Rina Dechter,et al.  Structure-Driven Algorithms for Truth Maintenance , 1996, Artif. Intell..

[2]  YannakakisMihalis,et al.  On the Desirability of Acyclic Database Schemes , 1983 .

[3]  Rina Dechter,et al.  Empirical evaluation of diagnosis as optimization in constraint networks , 1992 .

[4]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[5]  Maria Grazia Scutellà,et al.  Polynomially Solvable Satisfiability Problems , 1988, Inf. Process. Lett..

[6]  Raymond Reiter A theory of diagnosis from first principles , 1986 .

[7]  Luigi Palopoli,et al.  Reasoning with Minimal Models: Efficient Algorithms and Applications. , 1994, KR 1994.

[8]  Donald W. Loveland,et al.  Near-Horn Prolog and beyond , 1991, Journal of Automated Reasoning.

[9]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[10]  Luigi Palopoli,et al.  Reasoning with Minimal Models: Efficient Algorithms and Applications , 1997, Artif. Intell..

[11]  Christophe Lecoutre Constraint Networks , 1992 .

[12]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[13]  Mukesh Dalal,et al.  A Hierarchy of Tractable Satisfiability Problems , 1992, Inf. Process. Lett..

[14]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[15]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[16]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[17]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[18]  Rina Dechter,et al.  Diagnosing Tree-Decomposable Circuits , 1995, IJCAI.

[19]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[20]  Jack Minker,et al.  On Indefinite Databases and the Closed World Assumption , 1987, CADE.

[21]  J. van Leeuwen,et al.  Logic Programming , 2002, Lecture Notes in Computer Science.

[22]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[23]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[24]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[25]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[26]  Vladimir Lifschitz,et al.  Computing Circumscription , 1985, IJCAI.

[27]  Anil Nerode,et al.  Computation and implementation of non-monotonic deductive databases , 1991 .

[28]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[29]  David W. Reed,et al.  The Near-Horn Approach to Disjunctive Logic Programming , 1991, ELP.

[30]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[31]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..