The role of physiological heterogeneity in microbial population behavior.

[1]  S. Lindström,et al.  Miniaturization of biological assays -- overview on microwell devices for single-cell analyses. , 2011, Biochimica et biophysica acta.

[2]  Rustem F Ismagilov,et al.  Digital PCR on a SlipChip. , 2010, Lab on a chip.

[3]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[4]  R. Zare,et al.  Microfluidic platforms for single-cell analysis. , 2010, Annual review of biomedical engineering.

[5]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[6]  R. Zenobi,et al.  Analytical techniques for single-cell metabolomics: state of the art and trends , 2010, Analytical and bioanalytical chemistry.

[7]  S. Bodovitz,et al.  Single cell analysis: the new frontier in 'omics'. , 2010, Trends in biotechnology.

[8]  Rustem F Ismagilov,et al.  Nanoliter multiplex PCR arrays on a SlipChip. , 2010, Analytical chemistry.

[9]  Guo-Cheng Yuan,et al.  Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis , 2010, Proceedings of the National Academy of Sciences.

[10]  Thomas M. Norman,et al.  An epigenetic switch governing daughter cell separation in Bacillus subtilis. , 2010, Genes & development.

[11]  Richard Novak,et al.  High-performance single cell genetic analysis using microfluidic emulsion generator arrays. , 2010, Analytical chemistry.

[12]  S. Ishii,et al.  Single-cell analysis and isolation for microbiology and biotechnology: methods and applications , 2010, Applied Microbiology and Biotechnology.

[13]  Antti Häkkinen,et al.  Effects of Transcriptional Pausing on Gene Expression Dynamics , 2010, PLoS Comput. Biol..

[14]  Rustem F Ismagilov,et al.  Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. , 2010, Chemical Society reviews.

[15]  Jessica A. Thompson,et al.  Dynamics of intracellular bacterial replication at the single cell level , 2010, Proceedings of the National Academy of Sciences.

[16]  R. Goodacre,et al.  Shining light on the microbial world the application of Raman microspectroscopy. , 2010, Advances in applied microbiology.

[17]  Roberto Kolter,et al.  Cannibalism enhances biofilm development in Bacillus subtilis , 2009, Molecular microbiology.

[18]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[19]  A. van Oudenaarden,et al.  Quantitative time-lapse fluorescence microscopy in single cells. , 2009, Annual review of cell and developmental biology.

[20]  R. Mathies,et al.  Integrated microfluidic systems for high-performance genetic analysis. , 2009, Trends in biotechnology.

[21]  M. Wagner Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. , 2009, Annual review of microbiology.

[22]  Tsutomu Masujima,et al.  Live single-cell mass spectrometry. , 2009, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[23]  R. Ismagilov,et al.  Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. , 2009, Lab on a chip.

[24]  Kirsten Jung,et al.  Heterogeneity in quorum sensing‐regulated bioluminescence of Vibrio harveyi , 2009, Molecular microbiology.

[25]  T. Strovas,et al.  Population heterogeneity in Methylobacterium extorquens AM1. , 2009, Microbiology.

[26]  Daniel J Müller,et al.  Force probing surfaces of living cells to molecular resolution. , 2009, Nature chemical biology.

[27]  James C. W. Locke,et al.  Using movies to analyse gene circuit dynamics in single cells , 2009, Nature Reviews Microbiology.

[28]  Martin T. Suchorolski,et al.  A microwell array device capable of measuring single-cell oxygen consumption rates. , 2009, Sensors and actuators. B, Chemical.

[29]  Edgar A Arriaga,et al.  Determining biological noise via single cell analysis , 2009, Analytical and bioanalytical chemistry.

[30]  B. Stecher,et al.  A Simple Screen to Identify Promoters Conferring High Levels of Phenotypic Noise , 2008, PLoS genetics.

[31]  J. Choi,et al.  Defined spatial structure stabilizes a synthetic multispecies bacterial community , 2008, Proceedings of the National Academy of Sciences.

[32]  Eivind Almaas,et al.  Genetic noise control via protein oligomerization , 2008, BMC Systems Biology.

[33]  C. Ingham,et al.  Population Heterogeneity of Lactobacillus plantarum WCFS1 Microcolonies in Response to and Recovery from Acid Stress , 2008, Applied and Environmental Microbiology.

[34]  Deborah Leckband,et al.  Biophysical Properties of Cadherin Bonds Do Not Predict Cell Sorting* , 2008, Journal of Biological Chemistry.

[35]  Kirsten L. Frieda,et al.  A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell , 2008, Science.

[36]  Alexandra Ros,et al.  Microfluidic single-cell analysis of intracellular compounds , 2008, Journal of The Royal Society Interface.

[37]  S. D. De Keersmaecker,et al.  Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. , 2008, ACS nano.

[38]  Lili Niu,et al.  Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. , 2008, Biophysical journal.

[39]  Kirsten Jung,et al.  Timing and dynamics of single cell gene expression in the arabinose utilization system. , 2008, Biophysical journal.

[40]  M. Bott,et al.  Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 Caused by Prophage CGP3 , 2008, Journal of bacteriology.

[41]  Claude Desplan,et al.  Stochasticity and Cell Fate , 2008, Science.

[42]  M. Lidstrom,et al.  Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington , 2008, The ISME Journal.

[43]  Carmen Pin,et al.  Single-Cell and Population Lag Times as a Function of Cell Age , 2008, Applied and Environmental Microbiology.

[44]  M. Holl,et al.  A cellular isolation system for real-time single-cell oxygen consumption monitoring , 2008 .

[45]  J. Collins,et al.  Combinatorial promoter design for engineering noisy gene expression , 2007, Proceedings of the National Academy of Sciences.

[46]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[47]  T. Strovas,et al.  Cell-to-Cell Heterogeneity in Growth Rate and Gene Expression in Methylobacterium extorquens AM1 , 2007, Journal of bacteriology.

[48]  T. Abee,et al.  Quantitative Analysis of Population Heterogeneity of the Adaptive Salt Stress Response and Growth Capacity of Bacillus cereus ATCC 14579 , 2007, Applied and Environmental Microbiology.

[49]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[50]  Daniel J Müller,et al.  Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. , 2007, Annual review of biophysics and biomolecular structure.

[51]  J. Hasty,et al.  Dynamics of single-cell gene expression , 2006, Molecular systems biology.

[52]  Y. Sako Imaging single molecules in living cells for systems biology , 2006, Molecular systems biology.

[53]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[54]  X. Xie,et al.  Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.

[55]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[56]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[57]  Andreas Wagner,et al.  Faculty Opinions recommendation of Bacterial persistence: a model of survival in changing environments. , 2005 .

[58]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[59]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[60]  Benjamin B. Kaufmann,et al.  Contributions of low molecule number and chromosomal positioning to stochastic gene expression , 2005, Nature Genetics.

[61]  Thierry Emonet,et al.  Real-time RNA profiling within a single bacterium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[63]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[64]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[65]  A. Aertsen,et al.  Diversify or Die: Generation of Diversity in Response to Stress , 2005, Critical reviews in microbiology.

[66]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[67]  David R Walt,et al.  Simultaneously monitoring gene expression kinetics and genetic noise in single cells by optical well arrays. , 2004, Analytical chemistry.

[68]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[69]  M. Thattai,et al.  Stochastic Gene Expression in Fluctuating Environments , 2004, Genetics.

[70]  A. E. Hirsh,et al.  Noise Minimization in Eukaryotic Gene Expression , 2004, PLoS biology.

[71]  Kenji Yasuda,et al.  On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. , 2003, Biochemical and biophysical research communications.

[72]  I. Booth,et al.  Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. , 2002, International journal of food microbiology.

[73]  T. Camesano,et al.  Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. , 2002, Biomacromolecules.

[74]  G. Węgrzyn,et al.  ClpP/ClpX-mediated degradation of the bacteriophage λ O protein and regulation of λ phage and λ plasmid replication , 2000, Archives of Microbiology.

[75]  G. Węgrzyn,et al.  ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication. , 2000, Archives of Microbiology.

[76]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  James C. Hu,et al.  Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Maloney,et al.  Distribution of suboptimally induces -D-galactosidase in Escherichia coli. The enzyme content of individual cells. , 1973, Journal of molecular biology.

[79]  O. Rahn,et al.  The Growth Rate of Individual Bacterial Cells , 1932, Journal of bacteriology.