Degrees of categoricity of computable structures

Defining the degree of categoricity of a computable structure $${\mathcal{M}}$$ to be the least degree d for which $${\mathcal{M}}$$ is d-computably categorical, we investigate which Turing degrees can be realized as degrees of categoricity. We show that for all n, degrees d.c.e. in and above 0(n) can be so realized, as can the degree 0(ω).

[1]  Linda Jean Richter Degrees of Structures , 1981, Journal of Symbolic Logic.

[2]  S. Goncharov,et al.  Chapter 6 Autostable models and algorithmic dimensions , 1998 .

[3]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Richard A. Shore,et al.  Computably categorical structures and expansions by constants , 1999, Journal of Symbolic Logic.

[5]  Julia F. Knight,et al.  Enumerations in computable structure theory , 2005, Ann. Pure Appl. Log..

[6]  Bakhadyr Khoussainov,et al.  Complexity of Categorical Theories with Computable Models , 2004 .

[7]  Valentina S. Harizanov,et al.  Chapter 1 Pure computable model theory , 1998 .

[8]  Hao Wang,et al.  Number theoretic concepts and recursive well-orderings , 1960 .

[9]  V. Harizanov Pure computable model theory , 1998 .

[10]  Russell Miller D-computable Categoricity for Algebraic Fields , 2009, J. Symb. Log..

[11]  David Marker,et al.  Non Σn axiomatizable almost strongly minimal theories , 1989, Journal of Symbolic Logic.

[12]  S. S. Goncharov,et al.  Problem of the number of non-self-equivalent constructivizations , 1980 .

[13]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[14]  Einar W. Høst,et al.  Doctoral Dissertation , 1956, Church History.

[15]  Robert I. Soare,et al.  Recursively enumerable sets and degrees - a study of computable functions and computability generated sets , 1987, Perspectives in mathematical logic.

[16]  Arkadii M. Slinko,et al.  Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..

[17]  Y. Moschovakis Descriptive Set Theory , 1980 .

[18]  R. Soare Recursively enumerable sets and degrees , 1987 .