Polymers application in proton exchange membranes for fuel cells (PEMFCs)

Abstract This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

[1]  I. Honma,et al.  Anhydrous proton conductive membrane consisting of chitosan , 2005 .

[2]  Ulrich Stimming,et al.  ELECTROPHYSICAL PROPERTIES OF POLYMER ELECTROLYTE MEMBRANES : A RANDOM NETWORK MODEL , 1997 .

[3]  Linda Barelli,et al.  An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell , 2011 .

[4]  G. He,et al.  Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol-gel process , 2015 .

[5]  Lei Chen,et al.  Strong and conductive polybenzimidazole composites with high graphene contents , 2013 .

[6]  H. Doğan,et al.  Sulfonated PEEK and fluorinated polymer based blends for fuel cell applications: Investigation of th , 2010 .

[7]  Ferdinand Panik,et al.  Fuel cells for vehicle applications in cars - bringing the future closer , 1998 .

[8]  H. Allcock,et al.  Design and synthesis of ion‐conductive polyphosphazenes for fuel cell applications: Review , 2006 .

[9]  Preparation and evaluation of ionomeric membranes based on sulfonated-poly (styrene_isobutylene_styrene) membranes for proton exchange membrane fuel cells (PEMFC) , 2008 .

[10]  Jingyu Xi,et al.  Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application , 2013 .

[11]  J. Kerres,et al.  Blended and Cross‐Linked Ionomer Membranes for Application in Membrane Fuel Cells , 2005 .

[12]  J. Rose,et al.  Synthesis and properties of polyaryletherketones , 1981 .

[13]  M. Guiver,et al.  Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membr , 2011 .

[14]  Tony Thampan,et al.  Development and evaluation of portable and wearable fuel cells for soldier use , 2014 .

[15]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[16]  Günther G. Scherer,et al.  Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells , 1995 .

[17]  Huamin Zhang,et al.  A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells , 2007 .

[18]  T. Jana,et al.  Polybenzimidazole gel membrane for the use in fuel cell , 2011 .

[19]  U. Stimming,et al.  Proton-Conducting Membranes for Fuel Cells , 2015 .

[20]  J. Kerres,et al.  Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells , 1999 .

[21]  Yuezhou Wei,et al.  Pulse radiolysis investigation of ·OH and ·H radicals initiated degradation reaction of sulfonated aromatics as model compounds for proton exchange membrane , 2016, Research on Chemical Intermediates.

[22]  Hubert A. Gasteiger,et al.  Dependence of PEM fuel cell performance on catalyst loading , 2004 .

[23]  H. Gunaratne,et al.  Production of polyetheretherketone in ionic liquid media , 2013 .

[24]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[25]  Tao Yang,et al.  SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell , 2011 .

[26]  Shigeyuki Kawatsu,et al.  Advanced PEFC development for fuel cell powered vehicles , 1998 .

[27]  Nur Hidayati Othman,et al.  Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica–aluminium oxide for direct methanol fuel cell (DMFC) , 2009 .

[28]  M. Prober The Synthesis and Polymerization of Some Fluorinated Styrenes1 , 1953 .

[29]  Qin Xin,et al.  Zirconium phosphate/Nafion115 composite membrane for high-concentration DMFC , 2008 .

[30]  Meng Yang,et al.  Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell , 2009 .

[31]  T. Momose,et al.  Radiation grafting of α,β,β-trifluorostyrene onto poly(ethylene-tetrafluoroethylene) film by preirradiation method. II. Properties of cation-exchange membrane obtained by sulfonation and hydrolysis of the grafted film , 1989 .

[32]  Bernd Bauer,et al.  Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C) , 2001 .

[33]  Harry R. Allcock,et al.  Polyphosphazene solid electrolytes , 1984 .

[34]  Feng Zhang,et al.  Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides , 2007 .

[35]  Y. Shul,et al.  Thermal and hydrolytic stability of sulfonated polyimide membranes with varying chemical structure , 2005 .

[36]  R. Mark Ormerod Solid oxide fuel cells , 2003 .

[37]  Zhongyi Jiang,et al.  Proton conducting CS/P(AA-AMPS) membrane with reduced methanol permeability for DMFCs , 2008 .

[38]  Sang Yong Nam,et al.  A review of polymer–nanocomposite electrolyte membranes for fuel cell application , 2015 .

[39]  Ki-Young Kim,et al.  Optimal operation of a 1-kW PEMFC-based CHP system for residential applications , 2012 .

[40]  K. Miyatake,et al.  Hydrolytically stable polyimide ionomer for fuel cell applications , 2004 .

[41]  Yifan Li,et al.  Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells , 2015 .

[42]  K. Scott,et al.  The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell , 2010 .

[43]  P. Stonehart,et al.  Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO , 1975 .

[44]  Yanlin Song,et al.  Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications , 2014 .

[45]  J. F. Lima,et al.  Magnetic resonance and conductivity study of gelatin-based proton conductor polymer electrolytes , 2010 .

[46]  D. Aili,et al.  Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications. , 2013, ChemSusChem.

[47]  P. Kamat,et al.  Proton activity in nafion films: probing exchangeable protons with methylene blue. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[48]  Brian C. Benicewicz,et al.  Chapter 19 High-temperature polybenzimidazole-based membranes , 2009 .

[49]  A. Reis,et al.  Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell , 2009 .

[50]  H. Kita,et al.  Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis(4-aminophenyl)fluorene-2,7-disulfonic acid , 2002 .

[51]  A. Pawlicka,et al.  Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel electrolytes , 2005 .

[52]  Karren L. More,et al.  A Comparative Study of Phosphoric Acid-Doped m-PBI Membranes , 2014 .

[53]  H. Keul,et al.  Sulfonated poly( ether ether ketone)-silica membranes doped with phosphotungstic acid. Morphology and proton conductivity , 2009 .

[54]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[55]  Jong Hak Kim,et al.  Preparation and characterization of crosslinked proton conducting membranes based on chitosan and PSSA-MA copolymer , 2009 .

[56]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[57]  Saad Mekhilef,et al.  Comparative study of different fuel cell technologies , 2012 .

[58]  Lorenz Gubler,et al.  Radical (HO•, H• and HOO•) Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells , 2011 .

[59]  G. Eigenberger,et al.  Development and characterization of ion-exchange polymer blend membranes , 1998 .

[60]  Sarbjit Giddey,et al.  Materials issues and recent developments in molten carbonate fuel cells , 2012, Journal of Solid State Electrochemistry.

[61]  Hsieh-Yu Li,et al.  Polyelectrolyte composite membranes of polybenzimidazole and crosslinked polybenzimidazole-polybenzoxazine electrospun nanofibers for proton exchange membrane fuel cells , 2013 .

[62]  C. Lim,et al.  Materials and processes for light weight and high power density PEM fuel cells , 2000 .

[63]  Pedro Gómez-Romero,et al.  Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest , 2010 .

[64]  T. Xu,et al.  Acid–base hybrid polymer electrolyte membranes based on SPEEK , 2010 .

[65]  Marc A. Hillmyer,et al.  Highly Selective Polymer Electrolyte Membranes from Reactive Block Polymers , 2009 .

[66]  Allen M. Hermann,et al.  Bipolar plates for PEM fuel cells: A review , 2005 .

[67]  Xingxiang Zhang,et al.  Fabrication and wet spinning of a fully aromatic meta-polybenzimidazole , 2016 .

[68]  Zhe Wang,et al.  Preparation and properties of sulfonated poly(ether ether ketone)s (SPEEK)/polypyrrole composite membranes for direct methanol fuel cells , 2006 .

[69]  Tao Yang Preliminary study of SPEEK/PVA blend membranes for DMFC applications , 2008 .

[70]  Y. Meng,et al.  Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application , 2006 .

[71]  Jae Wook Lee,et al.  Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes , 2008 .

[72]  B. Yi,et al.  Performances of proton exchange membrane fuel cells with alternate membranes , 2001 .

[73]  Yan-Jie Wang,et al.  Alkaline polymer electrolyte membranes for fuel cell applications. , 2013, Chemical Society reviews.

[74]  Kas Hemmes,et al.  The Influence of Operating Temperature on the Efficiency of Combined Fuel Cell and Power Cycle System , 2002 .

[75]  N. Ogata,et al.  Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells , 2002 .

[76]  I. Honma,et al.  Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites , 2006 .

[77]  S. Holdcroft,et al.  Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups: Novel Branched Poly(ether−ketone)s , 2008 .

[78]  A. Boudghene Stambouli,et al.  Fuel cells, an alternative to standard sources of energy , 2002 .

[79]  B. Gupta,et al.  Development of radiation‐grafted FEP‐g‐polystyrene membranes: Some property–structure correlations , 1994 .

[80]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[81]  Ronghuan He,et al.  High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC , 2014 .

[82]  R. Wycisk,et al.  Blended Polyphosphazene/Polyacrylonitrile Membranes for Direct Methanol Fuel Cells , 2002 .

[83]  Gulsen Albayrak Ari,et al.  Investigation of salt addition and acid treatment effects on the transport properties of ionically c , 2011 .

[84]  S. Chirachanchai,et al.  Poly(acrylic acid-co-4-vinylimidazole)/Sulfonated poly(ether ether ketone) blend membranes: A role of polymer chain with proton acceptor and donor for enhancing proton transfer in anhydrous system , 2011 .

[85]  C. N. Merriam,et al.  Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties , 1967 .

[86]  H. Na,et al.  Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker , 2014 .

[87]  P. D. Howard,et al.  Hydrogen Sulfide Poisoning of Platinum Anode in Phosphoric Acid Fuel Cell Electrolyte , 1986 .

[88]  M. Kaiser,et al.  Proton-conducting polymers with reduced methanol permeation , 1999 .

[89]  Y. Elabd,et al.  Polymer electrolyte membranes for the direct methanol fuel cell: A review , 2006 .

[90]  Hongwei Zhang,et al.  Recent development of polymer electrolyte membranes for fuel cells. , 2012, Chemical reviews.

[91]  Y. Ein‐Eli,et al.  Review of Advanced Materials for Proton Exchange Membrane Fuel Cells , 2014 .

[92]  B. P. Tripathi,et al.  Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications. , 2008, The journal of physical chemistry. B.

[93]  Supramaniam Srinivasan,et al.  Analysis of proton exchange membrane fuel cell performance with alternate membranes , 1995 .

[94]  Nilofar Asim,et al.  A review of unitized regenerative fuel cell stack: Material, design and research achievements , 2014 .

[95]  O. K. Ozdemir Effect of Sputtering Power on the Electrochemical Properties of Low Loaded Pt Catalysts for PEM Fuel Cell , 2015 .

[96]  S. Holdcroft,et al.  Electrochemical Characterization of Ethylenetetrafluoroethylene‐g‐polystyrenesulfonic Acid Solid Polymer Electrolytes , 2000 .

[97]  B. Gupta,et al.  Materials research aspects of organic solid proton conductors , 1993 .

[98]  R. Hollandsworth,et al.  Preparation of oxidatively stable cation-exchange membranes by the elimination of tertiary hydrogens , 1991 .

[99]  S. Holdcroft,et al.  Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes: Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers , 2002 .

[100]  Seung-Hyeon Moon,et al.  Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane , 2004 .

[101]  H. Na,et al.  A facile approach to prepare self-cross-linkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells , 2010 .

[102]  H. Na,et al.  Cross-linked proton exchange membranes for direct methanol fuel cells: Effects of the cross-linker structure on the performances , 2012 .

[103]  Harry R. Allcock,et al.  Synthesis of High Polymeric Alkoxy- and Aryloxyphosphonitriles , 1965 .

[104]  A. Basile,et al.  Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review , 2012 .

[105]  Gao Qing Lu,et al.  Solid acid membranes for high temperature (¿140° C) proton exchange membrane fuel cells , 2005 .

[106]  R. Slade,et al.  Investigation of radiation-grafted PVDF-g-polystyrene-sulfonic-acid ion exchange membranes for use in hydrogen oxygen fuel cells , 1997 .

[107]  Benny D. Freeman,et al.  Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties , 2006 .

[108]  Rupendra Kumar Pachauri,et al.  A study, analysis and power management schemes for fuel cells , 2015 .

[109]  S. Holdcroft,et al.  A self-organized network of nanochannels enhances ion conductivity through polymer films , 2001 .

[110]  Marco Badami,et al.  Performance analysis of an innovative small-scale trigeneration plant with liquid desiccant cooling system , 2009 .

[111]  J. Reynolds,et al.  Water-soluble polybenzimidazole-based polyelectrolytes , 1992 .

[112]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[113]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[114]  M. Farooque,et al.  Fuel cells-the clean and efficient power generators , 2001, Proc. IEEE.

[115]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[116]  S. Y. Chen,et al.  Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity , 2007 .

[117]  O. Savadogo Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications☆ , 2004 .

[118]  Waldemar Bujalski,et al.  High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review , 2013 .

[119]  Philippe Knauth,et al.  Building bridges: Crosslinking of sulfonated aromatic polymers—A review , 2012 .

[120]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[121]  R. Zeis,et al.  Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells , 2015, Beilstein journal of nanotechnology.

[122]  Deborah J. Jones,et al.  Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer , 1997 .

[123]  J. F. Lima,et al.  Magnetic resonance and conductivity study of a gelatin-based polymer gel electrolyte , 2011 .

[124]  S. Zaidi,et al.  Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application , 2008 .

[125]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[126]  Huamin Zhang,et al.  An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application , 2008 .

[127]  Vincenzo Arcella,et al.  Hyflon Ion Membranes for Fuel Cells , 2005 .

[128]  A. Pawlicka,et al.  Agar-based films for application as polymer electrolytes , 2010 .

[129]  Y. Elabd,et al.  Sulfonation and Characterization of Poly(styrene-isobutylene-styrene) Triblock Copolymers at High Ion-Exchange Capacities , 2004 .

[130]  V. Silva,et al.  Membranes for direct methanol fuel cell based on modified heteropolyacids , 2004 .

[131]  L. Gubler Polymer Design Strategies for Radiation‐Grafted Fuel Cell Membranes , 2014 .

[132]  Y. Shul,et al.  Crosslinked sulfonated polyimide networks as polymer electrolyte membranes in fuel cells , 2005 .

[133]  J. Garche,et al.  Applications of Fuel Cell Technology: Status and Perspectives , 2015 .

[134]  Fuqiang Liu,et al.  Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells , 2003 .

[135]  Keith Scott,et al.  Modelling and experimental validation of a high temperature polymer electrolyte fuel cell , 2007 .

[136]  Bruno G. Pollet,et al.  The effect of materials on proton exchange membrane fuel cell electrode performance , 2011 .

[137]  San Ping Jiang,et al.  Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells , 2007 .

[138]  F. Figueiredo,et al.  Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. , 2014, ACS applied materials & interfaces.

[139]  H. Na,et al.  Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells , 2013 .

[140]  Timothy J. Peckham,et al.  Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells , 2008 .

[141]  B. Smitha,et al.  Solid polymer electrolyte membranes for fuel cell applications¿a review , 2005 .

[142]  Nedal Y. Abu-Thabit,et al.  Novel sulfonated poly(ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes , 2012 .

[143]  Shuang Ma,et al.  19F NMR studies of Nafion™ ionomer adsorption on PEMFC catalysts and supporting carbons , 2007 .

[144]  R. Wycisk,et al.  Sulfonated Polyphosphazene-Polybenzimidazole Membranes for DMFCs , 2005 .

[145]  Otoo Yamada,et al.  Methanol permeability and proton conductivity of sulfonated co-polyimide membranes , 2005 .

[146]  A. Kirubakaran,et al.  A review on fuel cell technologies and power electronic interface , 2009 .

[147]  A. Panchenko,et al.  In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications , 2004 .

[148]  Deborah J. Jones,et al.  Hybrid Polyaryletherketone Membranes for Fuel Cell Applications , 2002 .

[149]  F. Prinz,et al.  A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading , 2002 .

[150]  R. B. Hodgdon Polyelectrolytes prepared from perfluoroalkylaryl macromolecules , 1968 .

[151]  J. Ramı́rez-Salgado Study of basic biopolymer as proton membrane for fuel cell systems , 2007 .

[152]  A. Arof,et al.  A study on ionic interactions in chitosan–oxalic acid polymer electrolyte membranes , 2014 .

[153]  W. T. Grubb,et al.  Batteries with Solid Ion‐Exchange Membrane Electrolytes II . Low‐Temperature Hydrogen‐Oxygen Fuel Cells , 1960 .

[154]  Ravindra Datta,et al.  Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance , 2014 .

[155]  S. Çelik,et al.  Preparation and the proton conductivity of chitosan/poly(vinyl phosphonic acid) complex polymer electrolytes , 2008 .

[156]  Jing Ni,et al.  Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells , 2011 .

[157]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[158]  Sandor Balog,et al.  Proton conducting membranes prepared by radiation grafting of styrene and various comonomers , 2014 .

[159]  Amornchai Arpornwichanop,et al.  Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications , 2013 .

[160]  C. W. Lin,et al.  Sorption and transport properties of 2-acrylamido-2-methyl-1-propanesulfonic acid-grafted bacterial cellulose membranes for fuel cell application , 2013 .

[161]  Changpeng Liu,et al.  Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells , 2007 .

[162]  Justyna B. Walkowiak,et al.  Syntheses of Mono-, Di-,and Trifluorinated Styrenic Monomers , 2010 .

[163]  D. R. Lloyd,et al.  Synthesis and characterization of sulfonated poly(acrylene ether sulfones) , 1984 .

[164]  Tao Yang,et al.  Synthesis of sulfonated (ether ether ketone) based membranes containing poly(4-styrenesulfonic acid) and its excellent performance for direct methanol fuel cells , 2013 .

[165]  Hongying Hou,et al.  Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells. , 2011, ChemSusChem.

[166]  Shanfu Lu,et al.  Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells. , 2013, Carbohydrate polymers.

[167]  B. Améduri,et al.  Iodine Transfer Copolymerization of Fluorinated α-Methylstyrenes with Styrene Using 1-Iodoperfluorohexane as the Chain Transfer Agent , 2014 .

[168]  Jae‐Suk Lee,et al.  Cross-Linking Density Effect of Fluorinated Aromatic Polyethers on Transport Properties , 2009 .

[169]  W. T. Grubb Batteries with Solid Ion Exchange Electrolytes I . Secondary Cells Employing Metal Electrodes , 1959 .

[170]  Otoo Yamada,et al.  Synthesis and properties of novel sulfonated (co)polyimides bearing sulfonated aromatic pendant groups for PEFC applications , 2006 .

[171]  R. K. Mishra,et al.  Development of novel pectin based membranes as proton conducting material , 2012, International Journal of Plastics Technology.

[172]  P. Trogadas,et al.  Membrane and MEA Development in Polymer Electrolyte Fuel Cells , 2009 .

[173]  Z. Yue,et al.  Preparation of proton-conducting composite membranes from sulfonated poly(ether ether ketone) and polyacrylonitrile , 2007 .

[174]  A. Matsuda,et al.  Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether–ether ketone) , 2010 .

[175]  S. Holdcroft,et al.  Conductivity and Electrochemical ORR Mass Transport Properties of Solid Polymer Electrolytes Containing Poly(styrene sulfonic acid) Graft Chains , 2003 .

[176]  S. Licoccia,et al.  Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for Direct Methanol Fuel Cell Applications , 2009 .

[177]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[178]  H. Allcock,et al.  Phosphonitrilic Compounds. VI. High Molecular Weight Poly(alkoxy- and aryloxyphosphazenes) , 1966 .

[179]  J. Maier,et al.  Imidazole and pyrazole-based proton conducting polymers and liquids , 1998 .

[180]  Scott A Weiner Fuel cell stationary power business development , 1998 .

[181]  Huamin Zhang,et al.  A novel H 3 PO 4 / Nafion – PBI composite membrane for enhanced durability of high temperature PEM fuel cells , 2007 .

[182]  H. Koroniak,et al.  α-(Difluoromethyl)styrene: Improved approach to grams scale synthesis , 2015 .

[183]  J. Lawrence,et al.  The degradation mechanism of sulfonated poly(arylene ether sulfone)s in an oxidative environment , 2008 .

[184]  C. Marvel,et al.  Polybenzimidazoles, new thermally stable polymers , 1961 .

[185]  N. I. Harun,et al.  Dielectric behaviour of cellulose acetate-based polymer electrolytes , 2012, Ionics.

[186]  Alan C Lloyd,et al.  The California fuel cell partnership: an avenue to clean air , 2000 .

[187]  Dawn M. Crawford,et al.  Triblock copolymer ionomer membranes: Part I. Methanol and proton transport , 2003 .

[188]  Michael D. Guiver,et al.  Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications , 2000 .

[189]  G. Eisman,et al.  The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells , 1990 .

[190]  P. Brault,et al.  Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings , 2015 .

[191]  A. Wokaun,et al.  Radiation grafted fuel cell membranes based on co-grafting of α-methylstyrene and methacrylonitrile into a fluoropolymer base film , 2009 .

[192]  Qunhui Guo,et al.  Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes , 1999 .

[193]  Metin Kaya,et al.  Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications , 2010 .

[194]  O. Savadogo Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems , 1998 .

[195]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[196]  Qunhui Guo,et al.  Polyphosphazene membranes. III. Solid‐state characterization and properties of sulfonated poly[bis(3‐methylphenoxy)phosphazene] , 1999 .

[197]  I. Eroglu,et al.  Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell , 2012 .

[198]  S. Paddison,et al.  Effect of Molecular Weight on Hydrated Morphologies of the Short-Side-Chain Perfluorosulfonic Acid Membrane , 2009 .

[199]  Christian Gruber,et al.  Fuel cell drive and high dynamic energy storage systems — Opportunities for the future city bus , 2000 .

[200]  N. Ogata,et al.  Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules , 2000 .

[201]  Jung-Ho Wee,et al.  Applications of proton exchange membrane fuel cell systems , 2007 .

[202]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[203]  Saul G. Cohen,et al.  α,β,β-Trifluorostyrene and α-Chloro-β,β-difluorostyrene , 1949 .

[204]  H. Allcock,et al.  Phosphonitrilic Compounds. VII. High Molecular Weight Poly(diaminophosphazenes) , 1966 .

[205]  Haksoo Han,et al.  The stability of semi-interpenetrating polymer networks based on sulfonated polyimide and poly(ethylene glycol) diacrylate for fuel cell applications , 2008 .

[206]  H. Allcock Polyphosphazene Elastomers, Gels, and Other Soft Materials. , 2012, Soft matter.

[207]  A. Nikoukar,et al.  Sensor application in Direct Methanol Fuel Cells (DMFCs) , 2016 .

[208]  Lei Wang,et al.  Nano oxides incorporated sulfonated poly(ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery , 2016, Journal of Solid State Electrochemistry.

[209]  J. Kerres,et al.  Improvement of Properties of Poly(ether ketone) Ionomer Membranes by Blending and Cross-Linking , 2004 .

[210]  H. Allcock,et al.  SULFONATION OF (ARYLOXY)- AND (ARYLAMINO)PHOSPHAZENES : SMALL-MOLECULE COMPOUNDS, POLYMERS, AND SURFACES , 1991 .

[211]  Shinsuke Suzuki,et al.  Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. , 2006, Journal of the American Chemical Society.