Stability of the Visual World during Eye Drift

We are normally not aware of the microscopic eye movements that keep the retinal image in motion during visual fixation. In principle, perceptual cancellation of the displacements of the retinal stimulus caused by fixational eye movements could be achieved either by means of motor/proprioceptive information or by inferring eye movements directly from the retinal stimulus. In this study, we examined the mechanisms underlying visual stability during ocular drift, the primary source of retinal image motion during fixation on a stationary scene. By using an accurate system for gaze-contingent display control, we decoupled the eye movements of human observers from the changes in visual input that they normally cause. We show that the visual system relies on the spatiotemporal stimulus on the retina, rather than on extraretinal information, to discard the motion signals resulting from ocular drift. These results have important implications for the establishment of stable visual representations in the brain and argue that failure to visually determine eye drift contributes to well known motion illusions such as autokinesis and induced movement.

[1]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[2]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[3]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[4]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[5]  Abraham S. Luchins,et al.  The Relation of Size of Light to Autokinetic Effect , 1954 .

[6]  R. L. Gregory,et al.  The Origin of the Autokinetic Effect , 1963 .

[7]  D. Snodderly,et al.  Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. , 2008, Journal of vision.

[8]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[9]  H. Collewijn,et al.  The significance of microsaccades for vision and oculomotor control. , 2008, Journal of vision.

[10]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[11]  Michele Rucci,et al.  EyeRIS: A general-purpose system for eye-movement-contingent display control , 2007, Behavior research methods.

[12]  H D Crane,et al.  Generation-V dual-Purkinje-image eyetracker. , 1985, Applied optics.

[13]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[14]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[15]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[16]  F. J. Verheijen,et al.  Mechanism of Visual Autokinesis , 1964, Nature.

[17]  L MATIN,et al.  Autokinetic Movement: Selective Manipulation of Directional Components by Image Stabilization , 1964, Science.

[18]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[19]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[20]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[21]  R. Gregory,et al.  Eye Movements and the Stability of the Visual World , 1958, Nature.

[22]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[23]  I. Murakami Correlations between fixation stability and visual motion sensitivity , 2004, Vision Research.

[24]  Patrick Cavanagh,et al.  A jitter after-effect reveals motion-based stabilization of vision , 1998, Nature.

[25]  J. Nachmias Determiners of the drift of the eye during monocular fixation. , 1961, Journal of the Optical Society of America.

[26]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[27]  R. Steinman,et al.  Voluntary Control of Microsaccades during Maintained Monocular Fixation , 1967, Science.

[28]  Mark W. Greenlee,et al.  A Motion Illusion Reveals Mechanisms of Perceptual Stabilization , 2008, PloS one.

[29]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[30]  J. Gibson The visual perception of objective motion and subjective movement. , 1994, Psychological review.

[31]  K. Nakayama,et al.  Relative motion induced between stationary lines , 1978, Vision Research.

[32]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[33]  H. Carr Studies from the psychological laboratory of the University of Chicago: The autokinetic sensation. , 1910 .

[34]  R. C. Emerson,et al.  Paralysis of the awake human: Visual perceptions , 1976, Vision Research.

[35]  C. Sherrington OBSERVATIONS ON THE SENSUAL RÔLE OF THE PROPRIOCEPTIVE NERVE-SUPPLY OF THE EXTRINSIC OCULAR MUSCLES , 1918 .

[36]  D. M. MACKAY,et al.  Elevation of Visual Threshold by Displacement of Retinal Image , 1970, Nature.

[37]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[38]  D. Snodderly,et al.  Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding , 2001, Visual Neuroscience.

[39]  K. Duncker,et al.  Über induzierte Bewegung , 1929 .

[40]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.