Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging

Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.ZusammenfassungDie bildgestützte Radiotherapie („image guided radiotherapy“, IGRT) ist in die tägliche klinische Routine integriert und kann heute als Therapiestandard angesehen werden, insbesondere bei dosiseskalierten Strahlentherapiekonzepten. Die derzeitige Bildgebung basiert auf der MV- oder kV-CT, welche beide besonders in Bezug auf die Darstellung von Weichteilen Limitationen aufweisen. Aus diesem Grund ist die Kombination von Magnetresonanz-(MR-)Bildgebung und moderner Strahlentherapietechnik eine zukunftsweisende Entwicklung. Die speziellen technischen Eigenschaften von MR-Scannern bringen eine große Herausforderung mit sich, wenn sie mit hochmodernen Strahlentherapiegeräten kombiniert werden sollen. Eine Reihe technischer Lösungen sind entwickelt worden, die kurz vor dem klinischen Einsatz stehen. Die klinischen Fragestellungen umfassen unter anderem Strategien zur Dosiseskalation, Überwachung von Gewebeveränderungen während einer Strahlentherapie sowie Bildgebung unter Therapie ohne zusätzliche Dosisapplikation.

[1]  B. Fallone,et al.  First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. , 2009, Medical physics.

[2]  Olivier Salvado,et al.  An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. , 2012, International journal of radiation oncology, biology, physics.

[3]  C. Ménard,et al.  Introduction: Systems for magnetic resonance image guided radiation therapy. , 2014, Seminars in radiation oncology.

[4]  B W Raaymakers,et al.  Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons , 2005, Physics in medicine and biology.

[5]  A. Heuck,et al.  MR-Tomographie des Prostatakarzinoms , 2003, Der Radiologe.

[6]  T. Gauler,et al.  Long-term results of definitive radiochemotherapy in locally advanced cancers of the cervical esophagus. , 2014, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[7]  Vincent Magnotta,et al.  3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy. , 2014, International journal of radiation oncology, biology, physics.

[8]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[9]  M. Roethke,et al.  Comparison of ⁶⁸Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: Initial results. , 2015, Neuro-oncology.

[10]  David A Jaffray,et al.  A facility for magnetic resonance-guided radiation therapy. , 2014, Seminars in radiation oncology.

[11]  Tiina Seppälä,et al.  A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. , 2013, Medical physics.

[12]  H. Verkooijen,et al.  Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. , 2014, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  R. Shridhar,et al.  Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. , 2015, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[14]  C. Hurt,et al.  Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer , 2014, International journal of radiation oncology, biology, physics.

[15]  B W Raaymakers,et al.  Fast dose calculation in magnetic fields with GPUMCD , 2011, Physics in medicine and biology.

[16]  C. Bartram,et al.  Endorectal ultrasound and magnetic resonance imaging in rectal cancer staging. , 2002, Gastroenterology clinics of North America.

[17]  J. Jonsson,et al.  Treatment planning of intracranial targets on MRI derived substitute CT data. , 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  A. Vissink,et al.  Secondary radiation damage as the main cause for unexpected volume effects: a histopathologic study of the parotid gland. , 2006, International journal of radiation oncology, biology, physics.

[19]  Jan-Jakob Sonke,et al.  The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. , 2012, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  C Bert,et al.  Motion in radiotherapy: particle therapy , 2011, Physics in medicine and biology.

[21]  Julia Bauer,et al.  Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma. , 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  M. Knopp,et al.  Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. , 1996, AJR. American journal of roentgenology.

[23]  Peter van Luijk,et al.  Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. , 2003, International journal of radiation oncology, biology, physics.

[24]  T. Schuster,et al.  Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer , 2014, Strahlentherapie und Onkologie.

[25]  A. Graser,et al.  [MR imaging of prostate cancer]. , 2003, Der Radiologe.

[26]  Stuart Crozier,et al.  The Australian magnetic resonance imaging-linac program. , 2014, Seminars in radiation oncology.

[27]  Jan J W Lagendijk,et al.  The magnetic resonance imaging-linac system. , 2014, Seminars in radiation oncology.

[28]  Uwe Haberkorn,et al.  Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. , 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  F. Alongi,et al.  Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment. , 2014, The British journal of radiology.

[30]  H. Paganetti,et al.  Dosimetric feasibility of real-time MRI-guided proton therapy. , 2014, Medical physics.

[31]  Ion Prostate Irradiation (IPI) – a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique , 2014, BMC Cancer.

[32]  L. Remonda,et al.  Diffusion tensor imaging for target volume definition in glioblastoma multiforme , 2014, Strahlentherapie und Onkologie.

[33]  Sasa Mutic,et al.  A Device for Realtime 3D Image-Guided IMRT , 2005 .

[34]  P. Hall,et al.  Risk of ischemic heart disease in women after radiotherapy for breast cancer. , 2013, The New England journal of medicine.

[35]  Hervé Delingette,et al.  Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations , 2010, IEEE Transactions on Medical Imaging.

[36]  P. Schirmacher,et al.  Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer , 2013, Strahlentherapie und Onkologie.

[37]  Jan J W Lagendijk,et al.  MRI/linac integration. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[38]  Charis Kontaxis,et al.  Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T , 2015, Physics in medicine and biology.

[39]  M. Gilbert,et al.  Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. , 2013, Neuro-oncology.

[40]  Wolfgang A Weber,et al.  PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. , 2007, The Lancet. Oncology.

[41]  Jan J W Lagendijk,et al.  MR guidance in radiotherapy , 2014, Physics in medicine and biology.

[42]  B. Fallone,et al.  The rotating biplanar linac-magnetic resonance imaging system. , 2014, Seminars in radiation oncology.

[43]  Olivier Clatz,et al.  Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins. , 2011, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[44]  J. Debus,et al.  Outcome after neoadjuvant chemoradiation and correlation with nutritional status in patients with locally advanced pancreatic cancer , 2013, Strahlentherapie und Onkologie.

[45]  J. Carl,et al.  Differences in supratentorial white matter diffusion after radiotherapy – new biomarker of normal brain tissue damage? , 2013, Acta oncologica.

[46]  Maria A Schmidt,et al.  Radiotherapy planning using MRI , 2015, Physics in medicine and biology.

[47]  V. Goh,et al.  Pelvic MRI for guiding treatment decisions in rectal cancer. , 2014, Oncology.

[48]  B. Bednarz,et al.  Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field , 2013, Physics in medicine and biology.

[49]  Sasa Mutic,et al.  The ViewRay system: magnetic resonance-guided and controlled radiotherapy. , 2014, Seminars in radiation oncology.

[50]  J J W Lagendijk,et al.  Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field , 2007, Physics in medicine and biology.

[51]  M Wannenmacher,et al.  Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. , 2000, International journal of radiation oncology, biology, physics.

[52]  B G Fallone,et al.  A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields. , 2015, Medical physics.

[53]  Lawrence B Marks,et al.  The incidence and functional consequences of RT-associated cardiac perfusion defects. , 2005, International journal of radiation oncology, biology, physics.

[54]  Geerard L Beets,et al.  Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  B W Raaymakers,et al.  Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength , 2008, Physics in medicine and biology.

[56]  Jinsoo Uh,et al.  MRI-based treatment planning with pseudo CT generated through atlas registration. , 2014, Medical physics.

[57]  E W Steyerberg,et al.  Preoperative chemoradiotherapy for esophageal or junctional cancer. , 2012, The New England journal of medicine.

[58]  R. Langer,et al.  18F-FDG PET–Guided Salvage Neoadjuvant Radiochemotherapy of Adenocarcinoma of the Esophagogastric Junction: The MUNICON II Trial , 2011, The Journal of Nuclear Medicine.

[59]  C. Lambert,et al.  A Monte Carlo based formalism to identify potential locations at high risk of tumor recurrence with a numerical model for glioblastoma multiforme. , 2012, Medical physics.

[60]  C. Brink,et al.  Inhomogeneous dose escalation increases expected local control for NSCLC patients with lymph node involvement without increased mean lung dose , 2014, Acta oncologica.

[61]  Marco Durante,et al.  Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. , 2012, Medical physics.

[62]  First Measurement of Signal Changes Induced by Ionizing Radiation in Magnetic Resonance Imaging , 2013 .