Understanding the response of groundwater levels in alluvial and sedimentary basin aquifers to climatic variability and human water-resource developments is a key step in many hydrogeological investigations. This study presents an analysis of groundwater response to climate variability from 2000 to 2012 in the Queensland part of the sedimentary Clarence-Moreton Basin, Australia. It contributes to the baseline hydrogeological understanding by identifying the primary groundwater flow pattern, water-level response to climate extremes, and the resulting dynamics of surface-water/groundwater interaction. Groundwater-level measurements from thousands of bores over several decades were analysed using Kriging and nonparametric trend analysis, together with a newly developed three-dimensional geological model. Groundwater-level contours suggest that groundwater flow in the shallow aquifers shows local variations in the close vicinity of streams, notwithstanding general conformance with topographic relief. The trend analysis reveals that climate variability can be quickly reflected in the shallow aquifers of the Clarence-Moreton Basin although the alluvial aquifers have a quicker rainfall response than the sedimentary bedrock formations. The Lockyer Valley alluvium represents the most sensitively responding alluvium in the area, with the highest declining (−0.7 m/year) and ascending (2.1 m/year) Sen’s slope rates during and after the drought period, respectively. Different surface-water/groundwater interaction characteristics were observed in different catchments by studying groundwater-level fluctuations along hydrogeologic cross-sections. The findings of this study lay a foundation for future water-resource management in the study area.RésuméLa compréhension de l’évolution des niveaux piézométriques des aquifères alluviaux et des bassins sédimentaires, en réponse à la variabilité climatique et aux développements des ressources en eau pour les activités anthropiques, est. une étape clé des nombreuses investigations hydrogéologiques. Cette étude présente une analyse de l’évolution des eaux souterraines en réponse à la variabilité climatique entre 2000 et 2012, dans la partie du bassin sédimentaire de Clarence-Moreton située dans le Queensland, en Australie. Elle contribue à la connaissance de base du contexte hydrogéologique, en identifiant le modèle d’écoulement principal des eaux souterraines, la réponse des niveaux piézométriques lors des extrêmes climatiques, et les dynamiques qui en résultent dans les échanges nappe-rivière. Les mesures de niveaux piézométriques de milliers de forages, sur plusieurs décennies, ont été analysées en utilisant un krigeage et un test de tendance non paramétrique, conjointement avec un nouveau modèle géologique tridimensionnel. Les isopièzes suggèrent que les écoulements d’eau souterraine dans les aquifères peu profonds montrent des variations locales à proximité des cours d’eau, bien qu’étant globalement influencées par la topographie. L’analyse de tendance révèle que la variabilité climatique peut se répercuter rapidement sur les aquifères peu profonds du bassin de Clarence-Moreton, même si les aquifères alluviaux ont une réponse plus rapide aux précipitations que les formations du substratum sédimentaire. La vallée alluviale de Lockyer représente la partie alluviale la plus sensible de la zone, avec les plus forts taux d’évolution à la baisse (−0.7 m/an) et à la hausse (2.1 m/an), respectivement pendant et après la période de sécheresse. Des relations nappe-rivière aux caractéristiques différentes ont été observées, dans différents bassins versants, en étudiant les fluctuations piézométriques le long de coupes transversales hydrogéologiques. Les conclusions de cette étude posent les bases pour la gestion future des ressources en eau de la zone d’étude.ResumenLa comprensión de la respuesta de los niveles del agua subterránea en los acuíferos de las cuencas aluviales y sedimentarias a la variabilidad climática y a los desarrollos humanos de los recursos hídricos es un paso clave en muchas investigaciones hidrogeológicas. Este estudio presenta un análisis de la respuesta de las aguas subterráneas a la variabilidad del clima de 2000 a 2012 en la parte de Queensland de la cuenca sedimentaria de Clarence-Moreton, Australia. Contribuye a la comprensión hidrogeológica básica identificando el patrón de flujo primario de agua subterránea, la respuesta del nivel de agua a los extremos climáticos y la dinámica resultante de la interacción agua superficial/agua subterránea. Las mediciones de nivel de agua subterránea a partir de miles de pozos durante varias décadas se analizaron usando Kriging y el análisis de tendencias no paramétricas, junto con un modelo geológico tridimensional recientemente desarrollado. Los contornos del nivel del agua subterránea sugieren que el flujo de agua subterránea en los acuíferos poco profundos muestra variaciones locales en la cercanía de los arroyos, a pesar de la conformidad general con el relieve topográfico. El análisis de tendencias revela que la variabilidad climática puede reflejarse rápidamente en los acuíferos poco profundos de la cuenca Clarence-Moreton, aunque los acuíferos aluviales tienen una respuesta de precipitación más rápida que las sedimentarias. El aluvión del Valle de Lockyer representa el aluvión más sensiblemente reactivo en la zona, con las tasas de pendiente de Sen más altas (−0.7 m / año) y ascendente (2.1 m / año) durante y después del período de sequía, respectivamente. Se observaron diferentes características de interacción agua superficial/agua subterránea en diferentes captaciones mediante el estudio de las fluctuaciones del nivel del agua subterránea a lo largo de las secciones hidrogeológicas transversales. Los hallazgos de este estudio establecen una base para la futura gestión de los recursos hídricos en el área de estudio.摘要气候变化及人类对水资源的管理使用对地下水的影响是水文地质研究的一项重要内容。该研究分析和总结了澳大利亚Clarence-Moreton盆地地下水在2000到2012年间对气候变化的响应。通过对区域地下水流模式,地下水水位变化以及地表水-地下水交互数据的分析,该研究对该地区的基础水文地质提供了新的认识。研究方法主要包括对该区域跨度几十年的地下水位数据的克里金插值和趋势分析,以及基于三维地质模型的地表水-地下水交互分析。研究发现虽然浅层地下水的流动基本上受制于区域地形起伏的影响,但是河流沿岸的地下水流动更多的反映了局部地下水水位的变化。虽然冲积含水层比孔隙基岩含水层对气候变化的响应更快,总体来说该区域的浅层地下水对气候变化的响应比较快速。冲积含水层地下水位可见季节性的波动信号,孔隙基岩含水层虽不见季节性扰动信号,但是干旱期过后,地下水水位会逐年回升。根据Sen斜率分析,Lockyer Valley的冲积含水层是研究区内对气候变化最敏感的水文地质单元。在干旱期,该单元的地下水位下降速度约为0.7米/年。旱期过后,其地下水位回升的速度约为2.1米/年。借助三维地质模型,在不同的区域,可见不同的地表水-地下水交互行为。该研究取得的数据以及结果将为该区域未来的水资源管理提供新的科学支持。ResumoEntender a resposta dos níveis das águas subterrâneas em bacias aquíferas aluviais e sedimentares à variabilidade climática e aos desenvolvimentos humanos para o uso da água é um passo chave em diversas investigações hidrológicas. Esse estudo apresenta uma análise da resposta das águas subterrâneas à variabilidade climática de 2000 a 2012 na porção de Queensland da Bacia sedimentar Clarence-Moreton, Austrália. Isso contribui para o conhecimento hidrogeológico básico por identificar o padrão de fluxo primário das águas subterrâneas, respostas dos níveis à extremos climáticos, e a dinâmica resultante da interação águas superficiais/águas subterrâneas. Medidas de níveis das águas subterrâneas de milhares de poços por várias décadas foram analisadas usando Krigagem e análise de tendências não paramétricas, juntas com um desenvolvimento recente de um modelo geológico tridimensional. Os contornos dos níveis das águas subterrâneas sugerem que o fluxo das águas subterrâneas no aquífero raso apresenta variações locais nas proximidades dos cursos d’água, apesar da conformação genérica com o relevo topográfico. A análise de tendências revela que a variabilidade climática pode ser rapidamente refletida nos aquíferos rasos da Bacia Clarence-Moreton embora os aquíferos aluviais tenham uma resposta mais rápida à precipitação do que as formações de rocha matriz sedimentar. O Vale aluvial Lockyer representa o aluvião com respostas mais sensíveis presente na área, com os maiores declínios (−0.7 m/ano) e ascensões (2.1 m/ano) nas taxas de inclinação de Sen durante e depois os período de seca, respectivamente. Diferentes características da interação águas superficiais/águas subterrâneas foram observadas em diferentes bacias pelo estudo da flutuação do nível das águas subterrâneas ao longo de seções hidrogeológicas transversais. As descobertas desse estudo estabelecem uma base para a gestão futura dos recursos hídricos na área de estudo.
[1]
Methodology for bioregional assessments of the impacts of coal seam gas and coal mining development on water resources
,
2013
.
[2]
Randall T. Hanson,et al.
Climate Variability Controls on Unsaturated Water and Chemical Movement, High Plains Aquifer, USA
,
2007
.
[3]
Alex J. Cannon,et al.
Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model
,
2007
.
[4]
Elad Dafny,et al.
The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment
,
2014,
Hydrogeology Journal.
[5]
M. Raiber,et al.
Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the upper Condamine River catchment, Queensland, Australia.
,
2017,
The Science of the total environment.
[6]
Robert M. Hirsch,et al.
SELECTION OF METHODS FOR THE DETECTION AND ESTIMATION OF TRENDS IN WATER QUALITY
,
1991
.
[7]
M. Dettinger,et al.
Potential impacts of climate change on groundwater resources – a global review
,
2011
.
[8]
P. Whetton,et al.
The Potential Impacts of Climate Change
,
2000
.
[9]
H. B. Mann.
Nonparametric Tests Against Trend
,
1945
.
[10]
Vimal Mishra,et al.
Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India
,
2017
.
[11]
C Logan,et al.
On the kriging of water table elevations using collateral information from a digital elevation model
,
2002
.
[12]
J. Tailleur,et al.
Global Patterns of Groundwater Table Depth
,
2013
.
[13]
Jason J. Gurdak,et al.
Groundwater: Climate-induced pumping
,
2017
.
[14]
H. Jourde,et al.
Correlation and spectral analyses to assess the response of a shallow aquifer to low and high frequency rainfall fluctuations
,
2015
.
[15]
A. T. Wells,et al.
Development of Mesozoic transtensional basins in easternmost Australia
,
1989
.
[16]
B. Kelly,et al.
Groundwater recharge and time lag measurement through Vertosols using impulse response functions
,
2016
.
[17]
Matthew J Tonkin,et al.
Kriging Water Levels with a Regional‐Linear and Point‐Logarithmic Drift
,
2002,
Ground water.
[18]
Stefan Banzhaf,et al.
Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models
,
2015,
Water Resources Management.
[19]
Catherine Moore,et al.
Optimisation of monitoring data for increased predictive reliability of regional water allocation models
,
2011
.
[20]
C. Moore,et al.
Implications of using purified recycled water as an adjunct to groundwater resources for irrigation in the Lockyer Valley
,
2013
.
[21]
R Core Team,et al.
R: A language and environment for statistical computing.
,
2014
.
[22]
H. Kooi,et al.
Beneath the surface of global change: Impacts of climate change on groundwater
,
2011
.
[23]
R. B. Clapp,et al.
Cokriging model for estimation of water table elevation
,
1989
.
[24]
D. Whittemore,et al.
Assessing the major drivers of water-level declines: new insights into the future of heavily stressed aquifers
,
2016
.
[25]
Talal Yusaf,et al.
Coal seam gas and associated water: A review paper
,
2013
.
[26]
Rakad A. Ta’any,et al.
Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman–Zarqa basin, Jordan: a case study
,
2009
.
[27]
J. Delhomme.
Kriging in the hydrosciences
,
1978
.
[28]
Jim Underschultz,et al.
An overview of the coal seam gas developments in Queensland
,
2016
.
[29]
Mary P. Anderson,et al.
Applied groundwater modeling - simulation of flow and advective transport (4. pr.)
,
1991
.
[30]
Upmanu Lall,et al.
Depletion and response of deep groundwater to climate-induced pumping variability
,
2017
.
[31]
Suwin Sandu,et al.
Australian Energy Resource Assessment
,
2010
.
[32]
E. Bair,et al.
Applied Groundwater Modeling—Simulation of Flow and Advective Transport
,
2016
.
[33]
Jason J. Gurdak,et al.
Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence
,
2011
.
[34]
P. Sen.
Estimates of the Regression Coefficient Based on Kendall's Tau
,
1968
.
[35]
Alain Dassargues,et al.
Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium
,
2007
.
[36]
Stuart J Khan,et al.
Managing produced water from coal seam gas projects: implications for an emerging industry in Australia
,
2015,
Environmental Science and Pollution Research.
[37]
D. Helsel,et al.
Statistical methods in water resources
,
2020,
Techniques and Methods.
[38]
Robert W. Ritzi,et al.
Introduction to Geostatistics: Applications in Hydrogeology
,
1998
.
[39]
J. Palutikof,et al.
Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers.
,
2007
.
[40]
Trevor Pickett,et al.
An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs
,
2013,
Climatic Change.
[41]
H. Theil.
A Rank-Invariant Method of Linear and Polynomial Regression Analysis
,
1992
.
[42]
E. Custodio,et al.
Baseline groundwater quality: a European approach
,
2005
.
[43]
Y. Fan,et al.
Global Patterns of Groundwater Table Depth
,
2013,
Science.
[44]
B. Scanlon,et al.
Ground water and climate change
,
2013
.
[45]
J. P. Delhomme,et al.
Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach
,
1979
.
[46]
K. Hipel,et al.
Time series modelling of water resources and environmental systems
,
1994
.
[47]
M. Cox,et al.
Multivariate statistical analysis of hydrochemical data to assess alluvial aquifer–stream connectivity during drought and flood: Cressbrook Creek, southeast Queensland, Australia
,
2014,
Hydrogeology Journal.
[48]
M. Sophocleous.
Interactions between groundwater and surface water: the state of the science
,
2002
.
[49]
M. Johansen,et al.
Climate Change and Groundwater
,
2011
.