The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage

[1]  Benjamin P. C. Chen,et al.  PIDD mediates the association of DNA-PKcs and ATR at stalled replication forks to facilitate the ATR signaling pathway , 2018, Nucleic acids research.

[2]  S. Jackson,et al.  ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. , 2017, Molecular cell.

[3]  Z. Lou,et al.  A phosphorylation–deubiquitination cascade regulates the BRCA2–RAD51 axis in homologous recombination , 2016, Genes & development.

[4]  Yasutake Katoh,et al.  Ubiquitylation of Ku80 by RNF126 Promotes Completion of Nonhomologous End Joining-Mediated DNA Repair , 2016, Molecular and Cellular Biology.

[5]  M. Kaiser,et al.  VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair. , 2016, Molecular cell.

[6]  F. Hamdy,et al.  DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair. , 2016, Cancer research.

[7]  O. Gileadi,et al.  EXD2 promotes homologous recombination by facilitating DNA-end resection , 2016, Nature Cell Biology.

[8]  D. Durocher,et al.  A mechanism for the suppression of homologous recombination in G1 cells , 2015, Nature.

[9]  S. Jackson,et al.  USP4 Auto-Deubiquitylation Promotes Homologous Recombination , 2015, Molecular cell.

[10]  J. Masson,et al.  The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice , 2015, Nature Cell Biology.

[11]  T. Paull,et al.  CtIP: A DNA damage response protein at the intersection of DNA metabolism. , 2015, DNA repair.

[12]  S. Jackson,et al.  Neddylation Promotes Ubiquitylation and Release of Ku from DNA-Damage Sites , 2015, Cell reports.

[13]  S. Nakajima,et al.  Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. , 2015, Molecular cell.

[14]  Tom L. Blundell,et al.  PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair , 2015, Science.

[15]  B. Staumont DNA double-strand break repair pathway choice , 2014 .

[16]  M. Tatham,et al.  Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers , 2014, The Biochemical journal.

[17]  S. Jackson,et al.  Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity , 2014, Nature Cell Biology.

[18]  Helen Yu,et al.  Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair , 2013, Proceedings of the National Academy of Sciences.

[19]  Rodney Rothstein,et al.  Repair of strand breaks by homologous recombination. , 2013, Cold Spring Harbor perspectives in biology.

[20]  S. Jackson,et al.  A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair , 2013, The Journal of cell biology.

[21]  L. Postow,et al.  An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation , 2013, Cell cycle.

[22]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[23]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[24]  W. Vermeulen,et al.  ATP-dependent chromatin remodeling in the DNA-damage response , 2012, Epigenetics & Chromatin.

[25]  Junjie Chen,et al.  The E3 ligase RNF8 regulates KU80 removal and NHEJ repair , 2012, Nature Structural &Molecular Biology.

[26]  M. J. Neale,et al.  Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1 , 2011, Nature.

[27]  Markus Löbrich,et al.  Factors determining DNA double‐strand break repair pathway choice in G2 phase , 2011, The EMBO journal.

[28]  R. Kanaar,et al.  Regulation of DNA strand exchange in homologous recombination. , 2010, DNA repair.

[29]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[30]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[31]  B. Chait,et al.  Ku80 removal from DNA through double strand break–induced ubiquitylation , 2008, The Journal of cell biology.

[32]  Jeremy M. Stark,et al.  Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair , 2008, PLoS genetics.

[33]  David J. Chen,et al.  Ku recruits XLF to DNA double‐strand breaks , 2008, EMBO reports.

[34]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[35]  Jeroen A. A. Demmers,et al.  Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4 , 2006, Proceedings of the National Academy of Sciences.

[36]  P. Jeggo,et al.  Ku Stimulation of DNA Ligase IV-dependent Ligation Requires Inward Movement along the DNA Molecule* , 2003, Journal of Biological Chemistry.

[37]  J. Walker,et al.  Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair , 2001, Nature.

[38]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[39]  P. Frit,et al.  Ku Entry into DNA Inhibits Inward DNA Transactions in Vitro * , 2000, The Journal of Biological Chemistry.

[40]  L. Thompson,et al.  XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. , 1999, Genes & development.

[41]  L. Caskey,et al.  Cleavage of the C-terminus of NEDD8 by UCH-L3. , 1998, Biochemical and biophysical research communications.

[42]  P. Tucker,et al.  Ku is a general inhibitor of DNA-protein complex formation and transcription. , 1996, Molecular immunology.

[43]  D. Wessel,et al.  A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. , 1984, Analytical biochemistry.

[44]  Jacob E. Corn,et al.  Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. , 2013, Nature chemical biology.