Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application

[1]  Costas P. Grigoropoulos,et al.  Rapid, One‐Step, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth , 2013 .

[2]  S. Ko,et al.  Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. , 2013, ACS nano.

[3]  G. Shi,et al.  A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. , 2013, Chemical communications.

[4]  Costas P. Grigoropoulos,et al.  Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics , 2012, PloS one.

[5]  Jeongdai Jo,et al.  Design of roll-to-roll printing equipment with multiple printing methods for multi-layer printing. , 2012, The Review of scientific instruments.

[6]  Martti Toivakka,et al.  IR-sintering of ink-jet printed metal-nanoparticles on paper , 2012 .

[7]  Seung-Hyun Lee,et al.  Register control of roll-to-roll gravure-offset printing equipment considering time difference between measurement and actuation , 2012 .

[8]  Young‐Chang Joo,et al.  Highly Conductive Ag Nanoparticulate Films Induced by Movable Rapid Thermal Annealing Applicable to Roll-to-Roll Processing , 2011 .

[9]  Reijo Tuokko,et al.  Low temperature nanoparticle sintering with continuous wave and pulse lasers , 2011 .

[10]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[11]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .

[12]  Dong-Soo Kim,et al.  The effect of shear force on ink transfer in gravure offset printing , 2010 .

[13]  G. Rozgonyi,et al.  Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films , 2010 .

[14]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[15]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[16]  Pekka Ruuskanen,et al.  The characterization of electrically conductive silver ink patterns on flexible substrates , 2009, Microelectron. Reliab..

[17]  T. Unander,et al.  Characterization of Printed Moisture Sensors in Packaging Surveillance Applications , 2009, IEEE Sensors Journal.

[18]  Ulrich S. Schubert,et al.  Argon plasma sintering of inkjet printed silver tracks on polymer substrates , 2009 .

[19]  Nam-Young Kim,et al.  Screen Printed Resonant Tags for Electronic Article Surveillance Tags , 2009 .

[20]  John A. Rogers,et al.  Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates , 2008 .

[21]  N. Hu,et al.  Tunneling effect in a polymer/carbon nanotube nanocompositestrain sensor , 2008 .

[22]  F. Delale,et al.  A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading , 2008 .

[23]  Christoph J. Brabec,et al.  Organic materials: Fantastic plastic , 2008 .

[24]  June-Ki Park,et al.  Transparent Film Heater Using Single‐Walled Carbon Nanotubes , 2007 .

[25]  Dong Young Kim,et al.  Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors , 2007 .

[26]  N. Brandt,et al.  Influence of process parameters on the electrical properties of offset printed conductive polymer layers , 2007 .

[27]  Yuning Li,et al.  A simple and efficient approach to a printable silver conductor for printed electronics. , 2007, Journal of the American Chemical Society.

[28]  U. Schubert,et al.  Ink‐jet Printing and Microwave Sintering of Conductive Silver Tracks , 2006 .

[29]  R. Hippler,et al.  Structural deformation, melting point and lattice parameter studies of size selected silver clusters , 2006 .

[30]  Janos Veres,et al.  Polymer-based organic field-effect transistor using offset printed source/drain structures , 2005 .

[31]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[32]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[33]  Peter Andersson,et al.  Active Matrix Displays Based on All‐Organic Electrochemical Smart Pixels Printed on Paper , 2002 .

[34]  Wenzhi Li,et al.  Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors , 2002 .

[35]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[36]  H. Thomas Hahn,et al.  Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light for Printed Electronics , 2011 .

[37]  Yucheng Ding,et al.  Investigation of ink transfer in a roller-reversal imprint process , 2008 .