Fossilized iron bacteria reveal a pathway to the biological origin of banded iron formation

[1]  W. Fischer,et al.  Siliciclastic associated banded iron formation from the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa , 2013 .

[2]  E. Roden,et al.  Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland) , 2013 .

[3]  J. Gutzmer,et al.  The Composition and Depositional Environments of Mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa , 2013 .

[4]  M. Stampanoni,et al.  Regridding reconstruction algorithm for real-time tomographic imaging , 2012, Journal of synchrotron radiation.

[5]  D. Fortin,et al.  Insights into the Global Microbial Community Structure Associated with Iron Oxyhydroxide Minerals Deposited in the Aerobic Biogeosphere , 2012 .

[6]  N. Noffke,et al.  Microbial Mats in Siliciclastic Depositional Systems Through Time , 2012 .

[7]  E. Roden,et al.  Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation , 2011 .

[8]  A. Bekker,et al.  Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event , 2011, Nature.

[9]  A. Hamzah,et al.  Application of electron microscopy and energy dispersive X-ray spectroscopy in the characterization of Rhodomicrobium vannielii , 2011 .

[10]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[11]  A. J. Kaufman,et al.  Pervasive oxygenation along late Archaean ocean margins , 2010 .

[12]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[13]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[14]  A. Bekker,et al.  Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans , 2009 .

[15]  W. Balsam,et al.  Centennial blooming of anoxygenic phototrophic bacteria in Qinghai Lake linked to solar and monsoon activities during the last 18,000 years , 2009 .

[16]  D. Canfield,et al.  Photoferrotrophs thrive in an Archean Ocean analogue , 2008, Proceedings of the National Academy of Sciences.

[17]  A. Kappler,et al.  Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans , 2008 .

[18]  A. J. Kaufman,et al.  Late Archean Biospheric Oxygenation and Atmospheric Evolution , 2007, Science.

[19]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[20]  P. Fralick,et al.  Iron Formation in Neoarchean Deltaic Successions and the Microbially Mediated Deposition of Transgressive Systems Tracts , 2006 .

[21]  G. Roe,et al.  THE EARLY HISTORY OF ATMOSPHERIC OXYGEN : Homage to , 2006 .

[22]  D. Newman,et al.  Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria , 2005 .

[23]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[24]  A. Davis,et al.  Clues from Fe Isotope Variations on the Origin of Early Archean BIFs from Greenland , 2004, Science.

[25]  C. Little,et al.  Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents , 2004 .

[26]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[27]  J. Boulègue,et al.  Nature and origin of the Vani manganese deposit, Milos, Greece: an overview , 2001 .

[28]  K. Straub,et al.  Iron metabolism in anoxic environments at near neutral pH. , 2001, FEMS microbiology ecology.

[29]  W. Ludwig,et al.  Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain , 1999, Archives of Microbiology.

[30]  D. Abbott,et al.  Plume‐related mafic volcanism and the deposition of banded iron formation , 1999 .

[31]  Y. Kato,et al.  Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics , 1998 .

[32]  B. Schink,et al.  Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. , 1998, Microbiology.

[33]  F. Widdel,et al.  Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism , 1994, Applied and environmental microbiology.

[34]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[35]  N. Holm The 13C12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations , 1989 .

[36]  U. Schwertmann,et al.  Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite , 1983 .

[37]  A. Cairns-smith,et al.  Photo-oxidation of hydrated Fe2+—significance for banded iron formations , 1983, Nature.

[38]  C. Dow,et al.  Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. , 1977, Bacteriological reviews.

[39]  P. Cloud Paleoecological Significance of the Banded Iron-Formation , 1973 .

[40]  P. Cloud Significance of the Gunflint (Precambrian) Microflora , 1965, Science.