Every 1-generic computes a properly 1-generic

A real is called properly n -generic if it is n -generic but not n + 1-generic. We show that every 1-generic real computes a properly 1-generic real. On the other hand, if m > n ≥ 2 then an m -generic real cannot compute a properly n -generic real.

[1]  André Nies,et al.  Calibrating Randomness , 2006, Bull. Symb. Log..

[2]  Antonio Montalbán,et al.  Embedding and Coding below a 1-Generic Degree , 2003, Notre Dame J. Formal Log..

[3]  Carl G. Jockusch,et al.  Double jumps of minimal degrees , 1978, Journal of Symbolic Logic.

[4]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.

[5]  W. Fitch Random sequences. , 1983, Journal of molecular biology.

[6]  C. Jockusch Degrees of generic sets , 1980 .

[7]  Liang Yu,et al.  On initial segment complexity and degrees of randomness , 2008 .

[8]  Oscar H. IBARm Information and Control , 1957, Nature.

[9]  Christine Ann Haught The Degrees Below A 1-Generic Degree < 0? , 1986, J. Symb. Log..

[10]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[11]  Michiel van Lambalgen,et al.  Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..

[12]  R. Lathe Phd by thesis , 1988, Nature.

[13]  Masahiro Kumabe,et al.  Degrees of generic sets , 1996 .

[14]  Liang Yu,et al.  Lowness for genericity , 2006, Arch. Math. Log..