A Versatile Reconfigurable Bit-Serial Multiplier Architecture in Finite Fields GF(2m)

This paper presents a design for an efficient architecture of a reconfigurable bit-serial polynomial basis multiplier for Galois field GF(2m). The multiplier operates on the Most Significant Bit (MSB)-first for finite field multiplication. The design is flexible enough to configure different value of irreducible polynomial degree m for multiplication. Since the multiplier is doing a bit-serial processing with the gated clock technique, thus the design would be suitable for low power devices. Another advantage of the proposed architecture is the improvement of its maximum clock frequency and the high order of flexibility which allows an easy configuration for different field sizes.

[1]  M. A. Hasan,et al.  Efficient architectures for computations over variable dimensional Galois fields , 1998 .

[2]  Hua Li,et al.  Efficient Cellular Automata Based Versatile Multiplier for GF(2m) , 2002, J. Inf. Sci. Eng..

[3]  Mohammed Benaissa,et al.  Bit-serial multiplication in GF(2m) using irreducible all-one polynomials , 1997 .

[4]  Berk Sunar,et al.  Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields , 1998, IEEE Trans. Computers.

[5]  Anantha P. Chandrakasan,et al.  Low Power Digital CMOS Design , 1995 .

[6]  Johann Großschädl,et al.  A versatile and scalable digit-serial/parallel multiplier architecture for finite fields GF(2/sup m/) , 2003, Proceedings ITCC 2003. International Conference on Information Technology: Coding and Computing.

[7]  George Theodoridis,et al.  An efficient reconfigurable multiplier architecture for Galois field GF(2m) , 2003, Microelectron. J..

[8]  Chiou-Yng Lee,et al.  Bit-Parallel Systolic Multipliers for GF(2m) Fields Defined by All-One and Equally Spaced Polynomials , 2001, IEEE Trans. Computers.

[9]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[10]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[11]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[12]  Kee-Young Yoo,et al.  AOP arithmetic architectures over GF(2m) , 2004, Appl. Math. Comput..

[13]  Toshiya Itoh,et al.  Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..

[14]  Stafford E. Tavares,et al.  A Fast VLSI Multiplier for GF(2m) , 1986, IEEE J. Sel. Areas Commun..

[15]  Kee-Young Yoo,et al.  Bit-serial AB2 Multiplier Using Modified Inner Product , 2002, J. Inf. Sci. Eng..

[16]  Keshab K. Parhi,et al.  Efficient finite field serial/parallel multiplication , 1996, Proceedings of International Conference on Application Specific Systems, Architectures and Processors: ASAP '96.

[17]  Sung-Woon Lee,et al.  LFSR multipliers over GF(2m) defined by all-one polynomial , 2007, Integr..