Gold nanoparticle arrays for the voltammetric sensing of dopamine

[1]  Y. Lou,et al.  Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation , 2000 .

[2]  T. Ohsaka,et al.  Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer , 2001 .

[3]  D. Mandler,et al.  Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid , 1993 .

[4]  T. M. Devlin,et al.  Textbook of biochemistry: With clinical correlations , 1982 .

[5]  R. Wightman,et al.  Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. , 1996, Analytical chemistry.

[6]  A. D. Smith,et al.  Textbook of Biochemistry with Clinical Correlations , 1983 .

[7]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[8]  L. Angnes,et al.  Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium☆ , 2000 .

[9]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[10]  F. Gonon,et al.  Electrochemical treatment of pyrolytic carbon fiber electrodes , 1981 .

[11]  T. Ohsaka,et al.  An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes ☆ , 2002 .

[12]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[13]  B. Ogorevc,et al.  Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. , 2001, Analytical chemistry.

[14]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  E. Grushka,et al.  Use of gold nanoparticles to enhance capillary electrophoresis. , 2001, Analytical chemistry.

[16]  M. Natan,et al.  MORPHOLOGY-DEPENDENT ELECTROCHEMISTRY OF CYTOCHROME C AT AU COLLOID-MODIFIED SNO2 ELECTRODES , 1996 .

[17]  H. García,et al.  2,4,6-triphenylpyrylium ion encapsulated into zeolite Y as a selective electrode for the electrochemical determination of dopamine in the presence of ascorbic acid. , 2002, Analytical chemistry.

[18]  J. Cassidy,et al.  Ascorbic acid oxidation at polypyrrole-coated electrodes , 1991 .

[19]  R. Wightman,et al.  Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions , 1980 .

[20]  I. Willner,et al.  Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers , 1995 .

[21]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[22]  Š. Komorsky-Lovrič,et al.  Square-wave voltammetry of an adsorbed reactant , 1988 .

[23]  A. Ewing,et al.  Catalysis of slow charge transfer reactions at polypyrrole-coated glassy carbon electrodes , 1986 .

[24]  J. B. Justice,et al.  Peer Reviewed: Probing Brain Chemistry: Voltammetry Comes of Age , 1996 .

[25]  G. Gerhardt,et al.  Determination of diffusion coefficients by flow injection analysis , 1982 .

[26]  T. Ohsaka,et al.  Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. , 2001, Bioelectrochemistry.

[27]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[28]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[29]  Masayuki Nogami,et al.  Novel Electrochemical Interfaces with a Tunable Kinetic Barrier by Self-Assembling Organically Modified Silica Gel and Gold Nanoparticles , 2001 .

[30]  M. Rice,et al.  Simultaneous voltammetric and chemical monitoring of dopamine release in situ , 1985, Brain Research.

[31]  C. Zhong,et al.  Structures and Properties of Nanoparticle Thin Films Formed via a One-Step Exchange−Cross-Linking−Precipitation Route , 1999 .

[32]  N. Nakashima,et al.  Electroreflectance study of gold nanoparticles immobilized on an aminoalkanethiol monolayer coated on a polycrystalline gold electrode surface , 2002 .

[33]  Richard W. Siegel,et al.  Nanostructured materials -mind over matter- , 1993 .