A fast numerical method for evaluation of Calderón commutators

[1]  A. Calderón COMMUTATORS OF SINGULAR INTEGRAL OPERATORS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[2]  George Weiss,et al.  Integral Equation Methods , 1969 .

[3]  Ronald R. Coifman,et al.  On commutators of singular integrals and bilinear singular integrals , 1975 .

[4]  A. Calderón,et al.  Cauchy integrals on Lipschitz curves and related operators. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Meyer,et al.  Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .

[6]  Y. Meyer,et al.  L'integrale de Cauchy Definit un Operateur Borne sur L 2 Pour Les Courbes Lipschitziennes , 1982 .

[7]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[8]  The Cauchy integral, Calderón commutators, and conjugations of singular integrals in ⁿ , 1985 .

[9]  M. Christ Lectures on singular integral operators , 1991 .

[10]  D. Milder,et al.  AN IMPROVED FORMALISM FOR WAVE SCATTERING FROM ROUGH SURFACES , 1991 .

[11]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[12]  D. Milder,et al.  Role of the admittance operator in rough‐surface scattering , 1996 .

[13]  Y. Meyer,et al.  Wavelets: Calderón-Zygmund and Multilinear Operators , 1997 .

[14]  Maxim J. Goldberg,et al.  An improved operator expansion algorithm for direct and inverse scattering computations , 1999 .

[15]  A new formalism for time-dependent wave scattering from a bounded obstacle , 2000, The Journal of the Acoustical Society of America.

[16]  A representation formula and its applications to singular integrals , 2000 .