Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity.

[1]  C. M. Galhardi,et al.  Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. , 2006, European journal of pharmacology.

[2]  B. Kahn,et al.  Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. , 2006, The Journal of clinical investigation.

[3]  H. Katagiri,et al.  Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity , 2006, Autonomic Neuroscience.

[4]  J. Auwerx,et al.  Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation , 2006, Nature.

[5]  K. Gumireddy,et al.  Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. , 2005, Diabetes.

[6]  G. Bray,et al.  A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. , 2005, Diabetes.

[7]  P. Iyengar,et al.  The Hyperglycemia-induced Inflammatory Response in Adipocytes , 2005, Journal of Biological Chemistry.

[8]  Morihiro Matsuda,et al.  Increased oxidative stress in obesity and its impact on metabolic syndrome. , 2004, The Journal of clinical investigation.

[9]  C. Yurdaydın,et al.  Ligand‐induced expression of peroxisome proliferator‐activated receptor α and activation of fatty acid oxidation enzymes in fatty liver , 2004, European journal of clinical investigation.

[10]  E. Gabazza,et al.  Oxidative stress is associated with adiposity and insulin resistance in men. , 2003, The Journal of clinical endocrinology and metabolism.

[11]  H. Nawata,et al.  Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment , 2003, Diabetologia.

[12]  B. Yandell,et al.  Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. , 2003, Diabetes.

[13]  Steven C. Lawlor,et al.  MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.

[14]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[15]  S. Uchida,et al.  Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase , 2002, Nature Medicine.

[16]  D. Ross,et al.  Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. , 2002, American journal of physiology. Endocrinology and metabolism.

[17]  Elias S. J. Arnér,et al.  Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. , 2001, Free radical biology & medicine.

[18]  G. Boden Role of Fatty Acids in the Pathogenesis of Insulin Resistance and NIDDM , 1997, Diabetes.

[19]  M. Pagano,et al.  Student's t test. , 1993, Nutrition.

[20]  H. Krieger-Brauer,et al.  Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. , 1992, The Journal of clinical investigation.

[21]  J. I. Pedersen,et al.  Metabolic aspects of peroxisomal β-oxidation , 1991 .

[22]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[23]  F. G. Young Enzymes , 1951 .

[24]  G. Farrell,et al.  Etiopathogenesis of Nonalcoholic Steatohepatitis , 2001, Seminars in liver disease.

[25]  B. Spiegelman,et al.  Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. , 1993, Science.

[26]  J. I. Pedersen,et al.  Metabolic aspects of peroxisomal beta-oxidation. , 1991, Biochimica et biophysica acta.