The Angelman Syndrome-associated ubiquitin ligase Ube 3 A regulates synapse development by ubiquitinating Arc

Angelman Syndrome is a debilitating neurological disorder caused by mutation of the E3 ubiquitin ligase Ube3A, a gene whose mutation has also recently been associated with autism spectrum disorders (ASDs). The function of Ube3A during nervous system development, and how Ube3A mutations give rise to cognitive impairment in individuals with Angleman Syndrome and ASDs are not clear. We report here that experience-driven neuronal activity induces Ube3A transcription and that Ube3A then regulates excitatory synapse development by controlling the degradation of Arc, a synaptic protein that promotes the internalization of the AMPA sub-type of glutamate receptors. We find that disruption of Ube3A function in neurons leads to an increase in Arc expression and a concomitant decrease in the number of AMPA receptors at excitatory synapses. We propose that this deregulation of AMPA receptor expression at synapses may contribute to the cognitive dysfunction that occurs in Angelman Syndrome and possible other ASDs.

[1]  R. Prakash,et al.  Ube3a is required for experience-dependent maturation of the neocortex , 2009, Nature Neuroscience.

[2]  Robert T. Schultz,et al.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes , 2009, Nature.

[3]  Ann Marie Craig,et al.  Heterosynaptic Molecular Dynamics: Locally Induced Propagating Synaptic Accumulation of CaM Kinase II , 2009, Neuron.

[4]  Roberto Malinow,et al.  Synaptic AMPA Receptor Plasticity and Behavior , 2009, Neuron.

[5]  Steven W. Flavell,et al.  Genome-Wide Analysis of MEF2 Transcriptional Program Reveals Synaptic Target Genes and Neuronal Activity-Dependent Polyadenylation Site Selection , 2008, Neuron.

[6]  Athar N. Malik,et al.  Activity-dependent regulation of inhibitory synapse development by Npas4 , 2008, Nature.

[7]  Michael E. Greenberg,et al.  From Synapse to Nucleus: Calcium-Dependent Gene Transcription in the Control of Synapse Development and Function , 2008, Neuron.

[8]  Eric M. Morrow,et al.  Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry , 2008, Science.

[9]  Richard L. Huganir,et al.  Elongation Factor 2 and Fragile X Mental Retardation Protein Control the Dynamic Translation of Arc/Arg3.1 Essential for mGluR-LTD , 2008, Neuron.

[10]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[11]  J. Gécz,et al.  SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. , 2008, American journal of human genetics.

[12]  M. Bear,et al.  Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome , 2008, The Journal of physiology.

[13]  Stephen T Warren,et al.  Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors , 2007, Proceedings of the National Academy of Sciences.

[14]  Hidde L Ploegh,et al.  The mouse polyubiquitin gene UbC is essential for fetal liver development, cell‐cycle progression and stress tolerance , 2007, The EMBO journal.

[15]  R. Huganir,et al.  Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Eric C. Griffith,et al.  An RNAi-Based Approach Identifies Molecules Required for Glutamatergic and GABAergic Synapse Development , 2007, Neuron.

[17]  Jing Wu,et al.  Arc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors , 2006, Neuron.

[18]  Roberto Malinow,et al.  Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission , 2006, Neuron.

[19]  Richard L. Huganir,et al.  Arc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking , 2006, Neuron.

[20]  Eric C. Griffith,et al.  Brain-Specific Phosphorylation of MeCP2 Regulates Activity-Dependent Bdnf Transcription, Dendritic Growth, and Spine Maturation , 2006, Neuron.

[21]  A. Hannan,et al.  Enriched environments, experience-dependent plasticity and disorders of the nervous system , 2006, Nature Reviews Neuroscience.

[22]  A. Beaudet,et al.  Angelman syndrome 2005: Updated consensus for diagnostic criteria , 2006, American journal of medical genetics. Part A.

[23]  Steven W. Flavell,et al.  Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number , 2006, Science.

[24]  M. Tranfaglia,et al.  Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP , 2005, Neuropharmacology.

[25]  E. M. Cooper,et al.  Biochemical Analysis of Angelman Syndrome-associated Mutations in the E3 Ubiquitin Ligase E6-associated Protein* , 2004, Journal of Biological Chemistry.

[26]  Eric C. Griffith,et al.  Derepression of BDNF Transcription Involves Calcium-Dependent Phosphorylation of MeCP2 , 2003, Science.

[27]  J. Clayton-Smith,et al.  Angelman syndrome: a review of the clinical and genetic aspects , 2003, Journal of medical genetics.

[28]  J. Sutcliffe,et al.  Genetics of childhood disorders: XLVII. Autism, part 6: duplication and inherited susceptibility of chromosome 15q11-q13 genes in autism. , 2003, Journal of the American Academy of Child and Adolescent Psychiatry.

[29]  G. Holmes,et al.  Neurobehavioral and Electroencephalographic Abnormalities in Ube3a Maternal-Deficient Mice , 2002, Neurobiology of Disease.

[30]  E. Lander,et al.  ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF , 2000, Nature Genetics.

[31]  Santhosh K. P. Kumar,et al.  Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Howley,et al.  Identification of HHR23A as a Substrate for E6-associated Protein-mediated Ubiquitination* , 1999, The Journal of Biological Chemistry.

[33]  Gregor Eichele,et al.  Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation , 1998, Neuron.

[34]  J. Sutcliffe,et al.  Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons , 1997, Nature Genetics.

[35]  B. Leventhal,et al.  Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. , 1997, American journal of human genetics.

[36]  M. Lalande,et al.  UBE3A/E6-AP mutations cause Angelman syndrome , 1996, Nature Genetics.

[37]  Raoul C. M. Hennekam,et al.  Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP , 1995, Nature.

[38]  M. Scheffner,et al.  The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 , 1993, Cell.

[39]  E. Weeber,et al.  Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation , 2007, Nature Neuroscience.

[40]  Ping Fang,et al.  De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome , 1997, Nature Genetics.