Explicit Enumeration of Triangulations with Multiple Boundaries

We enumerate rooted triangulations of a sphere with multiple holes by the total number of edges and the length of each boundary component. The proof relies on a combinatorial identity due to W.T. Tutte.

[1]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[2]  W. T. Tutte A Census of Slicings , 1962, Canadian Journal of Mathematics.

[3]  Arak M. Mathai,et al.  Enumeration of almost cubic maps , 1972 .

[4]  Edward A. Bender,et al.  The asymptotic number of rooted maps on a surface , 1986, J. Comb. Theory, Ser. A.

[5]  Zhi-Cheng Gao The number of rooted triangular maps on a surface , 1991, J. Comb. Theory, Ser. B.

[6]  Zhicheng Gao,et al.  The asymptotic number of rooted 2-connected triangular maps on a surface , 1992, J. Comb. Theory, Ser. B.

[7]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[8]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[9]  Didier Arquès,et al.  Counting rooted maps on a surface , 2000, Theor. Comput. Sci..

[10]  M. A. Krikun Boundaries of random triangulation of a disk , 2004 .