The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming

[1]  J. Fierro,et al.  Study of the surface and redox properties of ceria–zirconia oxides , 2008 .

[2]  Zifeng Yan,et al.  Mesoporous nanocrystalline zirconia powders: A promising support for nickel catalyst in CH4 reforming with CO2 , 2007 .

[3]  G. Jacobs,et al.  Low temperature water-gas shift: Characterization of Pt-based ZrO2 catalyst promoted with Na discovered by combinatorial methods , 2007 .

[4]  A. Pintar,et al.  Nanostructured Cu(x)Ce1-xO2-y mixed oxide catalysts: characterization and WGS activity tests. , 2007, Journal of colloid and interface science.

[5]  Rolf Jürgen Behm,et al.  Influence of CO2 and H2 on the low-temperature water–gas shift reaction on Au/CeO2 catalysts in idealized and realistic reformate , 2007 .

[6]  G. Pantaleo,et al.  Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture , 2007 .

[7]  F. B. Noronha,et al.  The effect of ceria content on the properties of Pd/CeO2/Al2O3 catalysts for steam reforming of methane , 2007 .

[8]  Y. Schuurman,et al.  Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3 , 2006 .

[9]  Hengyong Xu,et al.  Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh–CeO2/Al2O3 catalyst , 2006 .

[10]  M. Yashima,et al.  XPS study of the phase transition in pure zirconium oxide nanocrystallites , 2005 .

[11]  D. Weng,et al.  Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst , 2005 .

[12]  U. Graham,et al.  LOW TEMPERATURE WATER GAS SHIFT: IMPACT OF PT PROMOTER LOADING ON THE PARTIAL REDUCTION OF CERIA AND CONSEQUENCES FOR CATALYST DESIGN , 2005 .

[13]  J. Bueno,et al.  Surface Behavior of Alumina-Supported Pt Catalysts Modified with Cerium as Revealed by X-ray Diffraction, X-ray Photoelectron Spectroscopy, and Fourier Transform Infrared Spectroscopy of CO Adsorption , 2004 .

[14]  J. Bueno,et al.  Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts , 2003 .

[15]  D. Resasco,et al.  Catalytic Performance of Pt/ZrO2 and Pt/Ce-ZrO2 Catalysts on CO2 Reforming of CH4 Coupled with Steam Reforming or Under High Pressure , 2003 .

[16]  V. Briois,et al.  Structural studies of a ZrO2-CeO2 doped system , 2003 .

[17]  R. D. Robinson,et al.  SIZE-DEPENDENT PROPERTIES OF CEO2-Y NANOPARTICLES STUDIED BY RAMAN SCATTERING , 2001 .

[18]  D. Resasco,et al.  Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1−xO2 catalysts , 2001 .

[19]  Y. Qian,et al.  Study of the Raman spectrum of CeO2 nanometer thin films , 2001 .

[20]  Johannes A. Lercher,et al.  Carbon Deposition during Carbon Dioxide Reforming of Methane—Comparison between Pt/Al2O3 and Pt/ZrO2 , 2001 .

[21]  G. Busca,et al.  Vibrational and electronic spectroscopic properties of zirconia powders , 2001 .

[22]  M. S. Hegde,et al.  Ionic dispersion of Pt and Pd on CeO2 by combustion method : Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation , 2000 .

[23]  D. Resasco,et al.  Effect of promoters on supported Pt catalysts for CO2 reforming of CH4 , 1998 .

[24]  G. Leofanti,et al.  Surface area and pore texture of catalysts , 1998 .

[25]  J. Bitter,et al.  The state of Zirconia Suported Platinum Catalysts for CO2/CH4 Reforming , 1997 .

[26]  B. Delmon,et al.  Surface characterization of zirconia-coated alumina and silica carriers , 1997 .

[27]  J. Kašpar,et al.  A Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2Supported Noble Metals , 1997 .

[28]  C. Mirodatos,et al.  Methane reforming reaction with carbon dioxide over Ni/SiO2 Catalyst. I. Deactivation studies , 1996 .

[29]  S. Bernal,et al.  Chemical and microstructural investigation of Pt/CeO2 catalysts reduced at temperatures ranging from 473 to 973 K , 1996 .

[30]  Xenophon E. Verykios,et al.  Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO , 1996 .

[31]  Mauro Graziani,et al.  Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties , 1995 .

[32]  A. Kiennemann,et al.  Redox Processes on Pure Ceria and on Rh/CeO2 Catalyst Monitored by X-Ray Absorption (Fast Acquisition Mode) , 1994 .

[33]  J. R. Rostrup-Nielsen,et al.  Aspects of CO2-reforming of Methane , 1994 .

[34]  M. Yoshimura,et al.  Zirconia–Ceria Solid Solution Synthesis and the Temperature–Time–Transformation Diagram for the 1:1 Composition , 1993 .

[35]  I. Alstrup,et al.  The kinetics of carbon formation from CH4 + H2 on a silica-supported nickel catalyst , 1992 .

[36]  A. Burggraaf,et al.  Zirconia as a support for catalysts: Evolution of the texture and structure on calcination in air , 1990 .

[37]  J. Dumesic,et al.  The effects of metal-oxygen bond strength on properties of oxides: II. Water-gas shift over bulk oxides , 1986 .

[38]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .