Range Extremum Queries

There has been a renewal of interest in data structures for range extremum queries. In such problems, the input comprises N points, which are either elements of a d-dimensional matrix, that is, their coordinates are specified by the 1D submatrices they lie in (row and column indices for d = 2), or they are points in ℝ d . Furthermore, associated with each point is a priority that is independent of the point’s coordinate. The objective is to pre-process the given points and priorities to answer the range maximum query (RMQ): given a d-dimensional rectangle, report the points with maximum priority. The objective is to minimze the space used by the data structure and the time taken to answer the above query. This talk surveys a number of recent developments in this area, focussing on the cases d = 1 and d = 2.

[1]  Moshe Lewenstein,et al.  Two-Dimensional Range Minimum Queries , 2007, CPM.

[2]  Timothy M. Chan,et al.  Orthogonal range searching on the RAM, revisited , 2011, SoCG '11.

[3]  Mikkel Thorup,et al.  Time-space trade-offs for predecessor search , 2006, STOC '06.

[4]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[5]  Marek Karpinski,et al.  Space Efficient Multi-dimensional Range Reporting , 2009, COCOON.

[6]  Roberto Grossi,et al.  When indexing equals compression: experiments with compressing suffix arrays and applications , 2004, SODA '04.

[7]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[8]  S. Srinivasa Rao,et al.  Succinct indexes for strings, binary relations and multi-labeled trees , 2007, SODA '07.

[9]  Haim Kaplan,et al.  Range Minima Queries with Respect to a Random Permutation, and Approximate Range Counting , 2011, Discret. Comput. Geom..

[10]  Prosenjit Bose,et al.  Succinct geometric indexes supporting point location queries , 2008, TALG.

[11]  Jean Vuillemin,et al.  A unifying look at data structures , 1980, CACM.

[12]  Yakov Nekrich Orthogonal Range Searching in Linear and Almost-Linear Space , 2007, WADS.

[13]  Rajeev Raman,et al.  Encoding 2D Range Maximum Queries , 2011, ISAAC.

[14]  Rajeev Raman,et al.  Succinct Representations of Binary Trees for Range Minimum Queries , 2012, COCOON.

[15]  Leah Epstein,et al.  Algorithms – ESA 2012 , 2012, Lecture Notes in Computer Science.

[16]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..

[17]  Moshe Lewenstein,et al.  Two dimensional range minimum queries and Fibonacci lattices , 2012, Theor. Comput. Sci..

[18]  Joseph JáJá,et al.  Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting , 2004, ISAAC.

[19]  S. Srinivasa Rao,et al.  On Space Efficient Two Dimensional Range Minimum Data Structures , 2011, Algorithmica.

[20]  Gad M. Landau,et al.  On Cartesian Trees and Range Minimum Queries , 2009, Algorithmica.

[21]  Mikhail J. Atallah,et al.  Data structures for range minimum queries in multidimensional arrays , 2010, SODA '10.

[22]  Richard Cole,et al.  Exponential Structures for Efficient Cache-Oblivious Algorithms , 2002, ICALP.

[23]  Volker Heun,et al.  Space-Efficient Preprocessing Schemes for Range Minimum Queries on Static Arrays , 2011, SIAM J. Comput..

[24]  Mihai Patrascu (Data) STRUCTURES , 2008, FOCS.

[25]  Allan Grønlund Jørgensen,et al.  Data Structures for Range Median Queries , 2009, ISAAC.

[26]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[27]  Timothy M. Chan,et al.  Transdichotomous Results in Computational Geometry, I: Point Location in Sublogarithmic Time , 2009, SIAM J. Comput..

[28]  Bernard Chazelle,et al.  Computing partial sums in multidimensional arrays , 1989, SCG '89.

[29]  Sartaj Sahni,et al.  Handbook of Data Structures and Applications , 2004 .