Selected mechanisms of matter ejection out of the cometary nuclei

[1]  J. Blum,et al.  Observations of the long-lasting activity of the distant Comets 29P Schwassmann–Wachmann 1, C/2003 WT42 (LINEAR) and C/2002 VQ94 (LINEAR) , 2021, 2102.04829.

[2]  P. Gronkowski,et al.  On migration of dust and ice grains on the surface of the rotating comet nucleus , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  M. Jahoda,et al.  CNG release from pressurized vessel through pressure relief safety device: isentropic flow approach versus CFD model , 2018, Journal of Physics: Conference Series.

[4]  P. Gronkowski,et al.  A new method for determining the mass ejected during the cometary outburst – Application to the Jupiter-family comets , 2018, New Astronomy.

[5]  P. Gronkowski,et al.  A New Simple Model of Comets-Like Activity of Centaurs , 2018, Earth, Moon, and Planets.

[6]  S. Debei,et al.  Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko , 2017 .

[7]  P. Gronkowski,et al.  Ejection of large particles from cometary nuclei in the shape of prolate ellipsoids , 2017 .

[8]  H. Keller,et al.  Is near-surface ice the driver of dust activity on 67P/Churyumov-Gerasimenko? , 2017 .

[9]  S. Debei,et al.  The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse , 2017, Nature Astronomy.

[10]  Nicolas Altobelli,et al.  Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta , 2016 .

[11]  S. Debei,et al.  Summer fireworks on comet 67P , 2016, 1609.07743.

[12]  H. Keller,et al.  A model of short-lived outbursts on the 67P from fractured terrains , 2016 .

[13]  P. Hartogh,et al.  Acceleration of cometary dust near the nucleus: application to 67P/Churyumov-Gerasimenko , 2016, 1606.08461.

[14]  S. Debei,et al.  Are fractured cliffs the source of cometary dust jets ? insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko , 2015, 1512.03193.

[15]  S. Debei,et al.  Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko , 2015 .

[16]  S. Debei,et al.  Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko , 2015 .

[17]  S. Debei,et al.  REDISTRIBUTION OF PARTICLES ACROSS THE NUCLEUS OF COMET 67P/CHURYUMOV-GERASIMENKO , 2015 .

[18]  P. Gronkowski,et al.  A model of cometary outbursts: a new simple approach to the classical question , 2015 .

[19]  H. Keller,et al.  What drives the dust activity of comet 67P/Churyumov-Gerasimenko? , 2015, 1506.08545.

[20]  P. Gronkowski,et al.  The influence of the nucleus shape on the maximum size of grains ejected from a comet by gentle sublimation and jet-like features , 2015 .

[21]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[22]  M. Belton The size-distribution of scattered disk TNOs from that of JFCs between 0.2 and 15 km effective radius , 2013, 1312.1424.

[23]  S. Szutowicz,et al.  Activity of Comet 29P/Schwassmann–Wachmann 1 , 2013 .

[24]  I. Ferrín,et al.  The location of Asteroidal Belt Comets (ABCs), in a comet's evolutionary diagram: The Lazarus Comets , 2013, 1305.2621.

[25]  B. Hermalyn,et al.  A distribution of large particles in the coma of Comet 103P/Hartley 2 , 2013, 1304.4204.

[26]  P. Gronkowski,et al.  Collisions of comets and meteoroids: The post Stardust-NExT discussion , 2012 .

[27]  V. Afanasiev,et al.  The rotation period of comet 29P/Schwassmann-Wachmann 1 determined from the dust structures (Jets) in the coma , 2012, 2012.09007.

[28]  Jean-Marc Petit,et al.  A cometary nucleus model taking into account all phase changes of water ice: amorphous, crystalline, and clathrate , 2012 .

[29]  S. Ipatov Location of upper borders of cavities containing dust and gas under pressure in comets , 2012, 1205.6000.

[30]  W. Huebner Physics and Chemistry of Comets , 2011 .

[31]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – II: Heat transport in dry, porous surface dust layers , 2011, 1111.0535.

[32]  Karri Muinonen,et al.  Interpretation of Photo-polarimetric Observations of Comet 17P/Holmes During Outburst in 2007 , 2011 .

[33]  H. Melosh,et al.  EPOXI at Comet Hartley 2 , 2011, Science.

[34]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities , 2011, 1105.3909.

[35]  F. Moreno,et al.  LEONID METEOROIDS: RECONCILIATION OF COMETARY OUTGASSING THEORY AND ELECTROPHONIC SOUND DATA , 2011 .

[36]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[37]  J. Blum,et al.  Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers , 2011, 1101.2518.

[38]  H. Keller,et al.  Gas Transport in the Near-Surface Porous Layers of a Cometary Nucleus , 2011, 1101.2525.

[39]  M. Belton Cometary activity, active areas, and a mechanism for collimated outflows on 1P, 9P, 19P, and 81P , 2010 .

[40]  A. Molina THE IMPORTANCE OF NUCLEUS ROTATION IN DETERMINING THE LARGEST GRAINS EJECTED FROM COMETS , 2010 .

[41]  D. A. Garc'ia-Hern'andez,et al.  Outburst activity in comets – II. A multiband photometric monitoring of comet 29P/Schwassmann–Wachmann 1 , 2010, 1009.2381.

[42]  J. Rho,et al.  Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope , 2010, 1001.4161.

[43]  D. Yeomans,et al.  Activity of comets at large heliocentric distances pre-perihelion , 2009 .

[44]  M. A’Hearn,et al.  The outburst triggered by the Deep Impact collision with Comet Tempel 1 , 2008, 0810.1294.

[45]  J. Trigo-Rodríguez,et al.  Outburst activity in comets I. Continuous monitoring of comet 29P/Schwassmann-Wachmann 1 , 2008 .

[46]  S. Szutowicz,et al.  Comet 9P/Tempel 1: Sublimation beneath the dust cover , 2008 .

[47]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[48]  P. Gronkowski The source of energy of the comet 29P/Schwassmann-Wachmann 1 outburst activity: the test of the summary , 2005 .

[49]  V. Zakharov,et al.  Direct Monte Carlo and multifluid modeling of the circumnuclear dust coma , 2005 .

[50]  L. Jorda,et al.  The nuclei of comets 126P/IRAS and 103P/Hartley 2 , 2004 .

[51]  A. Coradini,et al.  Modelling of cometary nuclei: Planetary missions preparation , 2003 .

[52]  Y. Skorov,et al.  On the Light-Absorbing Surface Layer of Cometary Nuclei: I. Radiative Transfer , 2002 .

[53]  W. Markiewicz,et al.  The Temperature and Bulk Flow Speed of a Gas Effusing or Evaporating from a Surface into a Void after Reestablishment of Collisional Equilibrium , 2000 .

[54]  J. Klinger,et al.  A 2 1/2 D thermodynamic model of cometary nuclei I. Application to the activity of comet 29P/Schwassmann-Wachmann 1 , 1997 .

[55]  J. Klinger,et al.  Complementary studies on the unexpected activity of comet Schwassmann-Wachmann 1 , 1996 .

[56]  James W. Jones The ejection of meteoroids from comets , 1995 .

[57]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[58]  J. M. Greenberg,et al.  From interstellar dust to comets - A unification of observational constraints , 1990 .

[59]  F. Fanale,et al.  An idealized short-period comet model - Surface insolation, H2O flux, dust flux, and mantle evolution , 1984 .

[60]  D. Mendis,et al.  The nature of the solar wind interaction with CO2/CO-dominated comets , 1981 .

[61]  D. Mendis,et al.  On the development and global oscillations of cometary ionospheres , 1981 .

[62]  L. Loeb,et al.  Kinetic Theory of Gases , 2018, Foundations of Plasma Physics for Physicists and Mathematicians.

[63]  Michael J. S. Belton,et al.  The mass disruption of Jupiter Family comets , 2015 .

[64]  J. Fernandez What makes comets active? , 2006 .

[65]  Laurence A. Soderblom,et al.  Formation of jets in Comet 19P/Borrelly by subsurface geysers , 2004 .