Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma

Glioblastoma is an incurable brain cancer characterized by high genetic and pathological heterogeneity. Here, we mapped active chromatin landscapes with gene expression, whole exomes, copy number profiles, and DNA methylomes across 44 patient-derived glioblastoma stem cells (GSCs), 50 primary tumors, and 10 neural stem cells (NSCs) to identify essential super-enhancer (SE)–associated genes and the core transcription factors that establish SEs and maintain GSC identity. GSCs segregate into two groups dominated by distinct enhancer profiles and unique developmental core transcription factor regulatory programs. Group-specific transcription factors enforce GSC identity; they exhibit higher activity in glioblastomas versus NSCs, are associated with poor clinical outcomes, and are required for glioblastoma growth in vivo. Although transcription factors are commonly considered undruggable, group-specific enhancer regulation of the MAPK/ERK pathway predicts sensitivity to MEK inhibition. These data demonstrate that transcriptional identity can be leveraged to identify novel dependencies and therapeutic approaches.

[1]  Patrick J. Paddison,et al.  A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways , 2020, Nature Communications.

[2]  Richard C. Sallari,et al.  Functional Enhancers Shape Extrachromosomal Oncogene Amplifications , 2019, Cell.

[3]  F. Furnari,et al.  Intron 1–Mediated Regulation of EGFR Expression in EGFR-Dependent Malignancies Is Mediated by AP-1 and BET Proteins , 2019, Molecular Cancer Research.

[4]  J. Godet,et al.  Prognostic significance of MEOX2 in gliomas , 2019, Modern Pathology.

[5]  James E. Bradner,et al.  Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. , 2018, Cancer cell.

[6]  A. Álvarez-Buylla,et al.  A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma , 2018, Nature Cell Biology.

[7]  R. Young,et al.  Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry , 2018, Nature Genetics.

[8]  M. Oldham,et al.  A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. , 2018, Cancer cell.

[9]  Andrew R. Morton,et al.  Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. , 2018, Cell stem cell.

[10]  Till Acker,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[11]  Charles Y. Lin,et al.  NRL and CRX Define Photoreceptor Identity and Reveal Subgroup-Specific Dependencies in Medulloblastoma. , 2018, Cancer cell.

[12]  Edward F. Chang,et al.  Erratum: Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment (Cancer Cell (2017) 32(1) (42–56.e6)(S1535610817302532)(10.1016/j.ccell.2017.06.003)) , 2018 .

[13]  Donald R. Polaski,et al.  Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma , 2018, Nature Genetics.

[14]  Anne Song,et al.  Therapeutic Targeting of Ependymoma as Informed by Oncogenic Enhancer Profiling , 2017, Nature.

[15]  Alex H. Wagner,et al.  DGIdb 3.0: a redesign and expansion of the drug–gene interaction database , 2017, bioRxiv.

[16]  F. Lieberman,et al.  Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial , 2017, JAMA.

[17]  Lisa C. Wallace,et al.  Targeting Glioma Stem Cells through Combined BMI1 and EZH2 Inhibition , 2017, Nature Medicine.

[18]  Damien Y. Duveau,et al.  Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma , 2017, Nature.

[19]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[20]  Maria C. Lecca,et al.  Neuroblastoma is composed of two super-enhancer-associated differentiation states , 2017, Nature Genetics.

[21]  Bradley E. Bernstein,et al.  Transcription elongation factors represent in vivo cancer dependencies in glioblastoma , 2017, Nature.

[22]  D. Quail,et al.  The Microenvironmental Landscape of Brain Tumors. , 2017, Cancer cell.

[23]  Benjamin R Arenkiel,et al.  Identification of diverse astrocyte populations and their malignant analogs , 2017, Nature Neuroscience.

[24]  E. Maher,et al.  Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma. , 2017, Cell reports.

[25]  Eilon D. Kirson,et al.  Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma , 2017 .

[26]  Mårten Fryknäs,et al.  Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. , 2016, Cell reports.

[27]  Ning Liu,et al.  Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth , 2016, Cell.

[28]  Eric C. Holland,et al.  The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas , 2016, Science.

[29]  L. J. Lee,et al.  Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. , 2016, Cancer cell.

[30]  Roland Eils,et al.  Active medulloblastoma enhancers reveal subgroup-specific cellular origins , 2016, Nature.

[31]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[32]  J. Barnholtz-Sloan,et al.  American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. , 2016, Neuro-oncology.

[33]  Webster K. Cavenee,et al.  EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. , 2015, Molecular cell.

[34]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[35]  J. Rich,et al.  Cancer stem cells in glioblastoma , 2015, Genes & development.

[36]  Kateryna D. Makova,et al.  The effects of chromatin organization on variation in mutation rates in the genome , 2015, Nature Reviews Genetics.

[37]  Jos Jonkers,et al.  CopywriteR: DNA copy number detection from off-target sequence data , 2015, Genome Biology.

[38]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[39]  William A. Flavahan,et al.  Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth , 2014, Nature Cell Biology.

[40]  Nam Huh,et al.  Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. , 2014, Cell reports.

[41]  R. Young,et al.  An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element , 2014, Science.

[42]  S. Heiland,et al.  Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. , 2014, Cell stem cell.

[43]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[44]  Simon Kasif,et al.  Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells , 2014, Cell.

[45]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[46]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[47]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[48]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[49]  Andrew E. Sloan,et al.  Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake , 2013, Nature Neuroscience.

[50]  Raul Rabadan,et al.  The integrated landscape of driver genomic alterations in glioblastoma , 2013, Nature Genetics.

[51]  P. Benos,et al.  Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 , 2013, Proceedings of the National Academy of Sciences.

[52]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[53]  David A. Orlando,et al.  Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers , 2013, Cell.

[54]  L. M. Wu,et al.  Olig2 Targets Chromatin Remodelers to Enhancers to Initiate Oligodendrocyte Differentiation , 2013, Cell.

[55]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[56]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth following chemotherapy , 2012, Nature.

[57]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[58]  L. Parada,et al.  Malignant Glioma: Lessons from Genomics, Mouse Models, and Stem Cells , 2012, Cell.

[59]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[60]  J. Stamler,et al.  Glioma Stem Cell Proliferation and Tumor Growth Are Promoted by Nitric Oxide Synthase-2 , 2011, Cell.

[61]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[62]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[63]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[64]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[65]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[66]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[67]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[68]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[69]  J. Uhm,et al.  The transcriptional network for mesenchymal transformation of brain tumours , 2010 .

[70]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[71]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[72]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[73]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[74]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[75]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[76]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[77]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[78]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[79]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[80]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[81]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[82]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[83]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[84]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[85]  Tao Sun,et al.  Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection , 2002, Cell.

[86]  Rudolf Jaenisch,et al.  DNA hypomethylation leads to elevated mutation rates , 1998, Nature.

[87]  S. Tapscott,et al.  Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. , 1989, Proceedings of the National Academy of Sciences of the United States of America.