Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells

[1]  Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells , 2012 .

[2]  Guozhong Cao,et al.  Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells , 2012 .

[3]  C. Lévy‐Clément,et al.  Toward High‐Stability Inverted Polymer Solar Cells with an Electrodeposited ZnO Electron Transporting Layer , 2012 .

[4]  Junbiao Peng,et al.  Polymer Solar Cells with a Low‐Temperature‐Annealed Sol–Gel‐Derived MoOx Film as a Hole Extraction Layer , 2012 .

[5]  Yu-Ting Lin,et al.  Highly efficient inverted rapid-drying blade-coated organic solar cells , 2012 .

[6]  Yongfang Li,et al.  High‐Performance Inverted Polymer Solar Cells with Solution‐Processed Titanium Chelate as Electron‐Collecting Layer on ITO Electrode , 2012, Advanced materials.

[7]  V. Harris,et al.  Enhancement of Photocurrent in Ferroelectric Films Via the Incorporation of Narrow Bandgap Nanoparticles , 2012, Advanced materials.

[8]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[9]  Christoph J. Brabec,et al.  Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer , 2011 .

[10]  Christoph J. Brabec,et al.  Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells , 2011 .

[11]  P. Sullivan,et al.  Utilizing n-type vanadium oxide films as hole-extracting layers for small molecule organic photovoltaics , 2011 .

[12]  T. Riedl,et al.  Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells , 2011 .

[13]  Thilini P. Rupasinghe,et al.  Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[15]  G. Garcia‐Belmonte,et al.  Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques , 2011 .

[16]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[17]  F. Krebs,et al.  Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement , 2011, Materials.

[18]  William J. Potscavage,et al.  Electrical and Optical Properties of ZnO Processed by Atomic Layer Deposition in Inverted Polymer Solar Cells , 2010 .

[19]  Liying Yang,et al.  Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells , 2010 .

[20]  T. Hsieh,et al.  Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors , 2010, Nanotechnology.

[21]  Takayuki Kuwabara,et al.  Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy. , 2010, ACS applied materials & interfaces.

[22]  Xiao Wei Sun,et al.  Optimization of an inverted organic solar cell , 2010 .

[23]  Liying Yang,et al.  Rhenium oxide as the interfacial buffer layer for polymer photovoltaic cells , 2010 .

[24]  K. Ho,et al.  Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells , 2010 .

[25]  Junbiao Peng,et al.  Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure , 2010 .

[26]  H. Demir,et al.  Improved Inverted Organic Solar Cells With a Sol–Gel Derived Indium-Doped Zinc Oxide Buffer Layer , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[28]  Ole Hagemann,et al.  A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration , 2009 .

[29]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[30]  Kuo-Chuan Ho,et al.  Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend , 2009 .

[31]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[32]  Frederik C. Krebs,et al.  A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air , 2008, Nanotechnology.

[33]  M. Welland,et al.  The backing layer dependence of open circuit voltage in ZnO/polymer composite solar cells , 2008 .

[34]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[35]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[36]  Guangzhi Hu,et al.  Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method , 2007 .

[37]  W. Su,et al.  Electroluminescence from ZnO nanoparticles/organic nanocomposites , 2006 .

[38]  Bharat Bhushan,et al.  Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity , 2006 .

[39]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..