Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology.

Ten algal strains from snow and permafrost substrates were tested for their ability to produce secondary carotenoids and alpha-tocopherol in response to high light and decreased nitrogen levels. The Culture Collection of Cryophilic Algae at Fraunhofer IBMT in Potsdam served as the bioresource for this study. Eight of the strains belong to the Chlorophyceae and two strains are affiliated to the Trebouxiophyceae. While under low light, all 10 strains produced the normal spectrum of primary pigments known to be present in Chlorophyta, only the eight chlorophyceaen strains were able to synthesize secondary carotenoids under stress conditions, namely canthaxanthin, echinenone and astaxanthin; seven of them were also able to synthesize minor amounts of adonixanthin and an unidentified hydroxyechinenone. The two trebouxiophyceaen species of Raphidonema exhibited an unusually high pool of primary xanthophyll cycle pigments, possibly serving as a buffering reservoir against excessive irradiation. They also proved to be good alpha-tocopherol producers, which might also support the deactivation of reactive oxygen species. This study showed that some strains might be interesting novel candidates for biotechnological applications. Cold-adapted, snow and permafrost algae might serve as valuable production strains still exhibiting acceptable growth rates during the cold season in temperate regions.

[1]  B. Duval,et al.  Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light , 1999, Journal of Applied Phycology.

[2]  J. Steinbrenner,et al.  Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. , 2001, Plant physiology.

[3]  W. E. Williams,et al.  The Light Environment and Cellular Optics of the Snow Alga Chlamydomonas nivalis (Bauer) Wille†,¶ , 2001 .

[4]  G. Britton,et al.  Biosynthesis and metabolism , 1998 .

[5]  C. Huck,et al.  Development and evaluation of a new method for the determination of the carotenoid content in selected vegetables by HPLC and HPLC-MS-MS. , 2000, Journal of chromatographic science.

[6]  D. Remias,et al.  Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis , 2005 .

[7]  S. Liaaen-Jensen,et al.  Primary and secondary carotenoids in two races of the green alga Botryococcus braunii , 1989 .

[8]  Feng Chen,et al.  Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture , 2005 .

[9]  K. Abe,et al.  Simultaneous production of β-carotene, vitamin E and vitamin C by the aerial microalga Trentepohlia aurea , 1999, Journal of Applied Phycology.

[10]  Erzsébet Kol,et al.  Kryobiologie : Biologie und Limnologie des Schnees und Eises , 1968 .

[11]  G. Fuhr,et al.  Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content , 1998, Polar Biology.

[12]  Richard L. Weiss,et al.  FINE STRUCTURE OF THE SNOW ALGA (CHLAMYDOMONAS NIVALIS) AND ASSOCIATED BACTERIA 1 , 1983 .

[13]  F. Czygan Sekundär-Carotinoide in Grünalgen , 1968, Archiv für Mikrobiologie.

[14]  H. Linden,et al.  Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. , 2002, Biochimica et biophysica acta.

[15]  J M Holden,et al.  Carotenoid content of fruits and vegetables: an evaluation of analytic data. , 1993, Journal of the American Dietetic Association.

[16]  D. Remias Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach , 2007 .

[17]  W. Miki,et al.  Biological functions and activities of animal carotenoids , 1991 .

[18]  G. Malanga,et al.  UV-B effects on Antarctic Chlorella sp cells. , 2001, Journal of photochemistry and photobiology. B, Biology.

[19]  Andrew J. Young,et al.  The Photochemistry of Carotenoids , 1999, Advances in Photosynthesis and Respiration.

[20]  R. Bidigare,et al.  EVIDENCE A PHOTOPROTECTIVE FOR SECONDARY CAROTENOIDS OF SNOW ALGAE 1 , 1993 .

[21]  K. Ikemura Development and application , 1971 .

[22]  G. Beecher,et al.  The development and application of a carotenoid database for fruits, vegetables, and selected multicomponent foods. , 1993, Journal of the American Dietetic Association.

[23]  J. D. del Campo,et al.  Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). , 2000, Journal of biotechnology.

[24]  T. G. Truscott,et al.  The carotenoids as anti-oxidants--a review. , 1997, Journal of photochemistry and photobiology. B, Biology.

[25]  C. Lütz,et al.  Determination of leaf pigments by HPLC after extraction with N,N-dimethylformamide: Ecophysiological applications , 1986 .

[26]  R. C. Starr THE CULTURE COLLEVTION OF ALGAE AT THE UNIVERSITY OF TEXAS ATAUSTIN 1 2 3 , 1978 .

[27]  F. Czygan Untersuchungen über die Bedeutung der Biosynthese von Sekundär-Carotinoiden als Artmerkmal bei Grünalgen , 1970, Archiv für Mikrobiologie.

[28]  Richard C. Starr,et al.  UTEX—THE CULTURE COLLECTION OF ALGAE AT THE UNIVERSITY OF TEXAS AT AUSTIN 1993 LIST OF CULTURES 1 , 1993 .

[29]  A. Otero,et al.  Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. , 2001, Journal of biotechnology.

[30]  A. Breeman,et al.  THE MECHANISM OF DAYLENGTH PERCEPTION IN THE RED ALGA ACROSYMPHYTON PURPURIFERUM 1 , 1987 .

[31]  S. Phang,et al.  Composition and accumulation of secondary carotenoids in Chlorococcum sp. , 1997, Journal of Applied Phycology.

[32]  A. Trebst,et al.  A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii , 2002, FEBS letters.

[33]  A. Grossman,et al.  Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii1[w] , 2005, Plant Physiology.

[34]  F. Czygan Canthaxanthin als Sekundär-Carotinoid einiger Grünalgen , 1964, Experientia.

[35]  H. Müller Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection , 1997 .

[36]  F. Czygan Sekundr-Carotinoide in Grnalgen: I. Chemie, Vorkommen und Faktoren, welche die Bildung dieser Polyene beeinflussen , 1968 .

[37]  Yuan-Kun Lee,et al.  Secondary carotenoids formation by the green alga Chlorococcum sp. , 2000, Journal of Applied Phycology.

[38]  S. Munné-Bosch,et al.  The role of α-tocopherol in plant stress tolerance , 2005 .

[39]  Czygan Fc Canthaxanthin as a secondary carotenoid of some green algae , 1964 .

[40]  R T Lorenz,et al.  Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. , 2000, Trends in biotechnology.

[41]  Andrew J. Young,et al.  Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor , 1996 .

[42]  Z. Cohen,et al.  Chemicals from Microalgae , 1999 .