Electrodeposition of Copper, Selenium, Indium, and Gallium on Molybdenum/Surface Oxides: Unary, Binary, Ternary and Quaternary Compositions

A systematic investigation was performed to study the variation of cyclic voltammetry (CV) peaks during cathodic electrodeposition of unary, binary, ternary and quaternary compositions of copper (Cu), selenium (Se), indium (In) and gallium (Ga) on molybdenum/glass electrode. The major objective of the work was to methodically understand the variation of different oxidation-reduction peaks from unary to quaternary composition so that a comprehensible idea on their appearance could be arrived. The electrodeposits were further characterized by anodic stripping voltammetry and frequency response analyzer-impedance spectroscopy. Phase and microstructure of the electrodeposits were examined by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The results presented were helpful to arrive at new conclusions on the variation of different CV peaks such as Mo/surface oxide’scharacteristic redox peak and In-characteristic oxidation peak. The present work will be of significance in different application areas like surface coatings, electronics and chalcopyrite solar cells, where electrodeposited Cu-Se-In-Ga is of importance.

[1]  A. Bard,et al.  Measurement of temperature-dependent stability constants of Cu(I) and Cu(II) chloride complexes by voltammetry at a Pt ultramicroelectrode. , 2015, Analytical chemistry.

[2]  C. Low,et al.  Electrodeposition of copper from mixed sulphate–chloride acidic electrolytes at a rotating disc electrode , 2014 .

[3]  Chi-Woo Lee,et al.  Potential and pH dependent pseudocapacitance of Mo/Mo oxides - An impedance study , 2014 .

[4]  Yan Li,et al.  Film growth mechanism for electrodeposited copper indium selenide compounds , 2012 .

[5]  F. Marken,et al.  Rocking disc electro-deposition of CuIn alloys, selenisation and pinhole effect minimisation in CISe solar absorber layers , 2012 .

[6]  Chi-Woo Lee,et al.  Molybdenum, molybdenum oxides, and their electrochemistry. , 2012, ChemSusChem.

[7]  Chi-Woo Lee,et al.  Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells , 2011 .

[8]  Gebo Pan,et al.  Nanoscale Electrodeposition of Ga on Au(111) from Ionic Liquids , 2011 .

[9]  Sang-Eun Bae,et al.  Stoichiometry of Pt Submonolayer Deposition via Surface-Limited Redox Replacement Reaction , 2010 .

[10]  M. Dergacheva,et al.  Electrodeposition of CuInSe2 films onto a molybdenum electrode , 2010 .

[11]  H. Okamoto Ga-Se (Gallium-Selenium) , 2009 .

[12]  Yen‐Pei Fu,et al.  Electrochemical Properties of Solid–Liquid Interface of CuIn1 − x Ga x Se2 Prepared by Electrodeposition with Various Gallium Concentrations , 2009 .

[13]  E. Chassaing,et al.  Electrochemical Growth of CuInSe2 Compounds on Polycrystalline Mo Films Studied by Raman and Impedance Spectroscopy , 2009 .

[14]  Zhian Zhang,et al.  Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films , 2009 .

[15]  M. A. Pasquale,et al.  Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives , 2008 .

[16]  C. H. Chen,et al.  Hydrogen Bubbles and the Growth Morphology of Ramified Zinc by Electrodeposition , 2008 .

[17]  P. Sebastián,et al.  Electrodeposition of indium onto Mo/Cu for the deposition of Cu(In,Ga)Se2 thin films , 2008 .

[18]  G. Zangari,et al.  Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolytes , 2007 .

[19]  E. A. Payzant,et al.  In situ investigation on selenization kinetics of Cu-In precursor using time-resolved, high temperature X-ray diffraction , 2006 .

[20]  A. Milchev,et al.  Nucleation and growth of copper under combined charge transfer and diffusion limitations—Part II , 2006 .

[21]  R. Birkmire,et al.  Controlling Growth Chemistry and Morphology of Single-Bath Electrodeposited Cu ( In , Ga ) Se2 Thin Films for Photovoltaic Application , 2006 .

[22]  G. Lacconi,et al.  Mechanism of copper electrodeposition in the presence of picolinic acid , 2006 .

[23]  Ling Huang,et al.  Electrodeposition of monodisperse copper nanoparticles on highly oriented pyrolytic graphite electrode with modulation potential method , 2005 .

[24]  M. Dergacheva,et al.  Electrodeposition of CuSex compounds onto carbon-containing electrodes , 2004 .

[25]  S. Machado,et al.  Microgravimetric, rotating ring-disc and voltammetric studies of the underpotential deposition of selenium on polycrystalline platinum electrodes , 2004 .

[26]  Q. Xue,et al.  Controlling synthesis of BiIn dendritic nanocrystals by solution dispersion. , 2004, Journal of the American Chemical Society.

[27]  Alan Mathewson,et al.  Voltammetric behaviour at gold electrodes immersed in the BCR sequential extraction scheme media: Application of underpotential deposition–stripping voltammetry to determination of copper in soil extracts , 2004 .

[28]  C. M. Pettit,et al.  Electrodeposition of indium on molybdenum studied with optical second harmonic generation and electrochemical impedance spectroscopy , 2002 .

[29]  D. M. Soares,et al.  Copper ion reduction catalyzed by chloride ions , 2002 .

[30]  B. Pešić,et al.  Electrodeposition of copper: the nucleation mechanisms , 2002 .

[31]  A. D. Cunha,et al.  A voltammetric study of the electrodeposition of CuInSe2 in a citrate electrolyte , 2002 .

[32]  D. R. Marr,et al.  Weak adsorption of anions on gold: measurement of partial charge transfer using Fast Fourier Transform electrochemical impedance spectroscopy , 2001 .

[33]  S. Takizawa,et al.  Indium-Mediated Reaction of 3-Bromo-3,3-difluoropropene and Bromodifluoromethylacetylene Derivatives with Aldehydes , 2000 .

[34]  K. Ramanathan,et al.  14.1% CuIn1 − x Ga x Se2‐Based Photovoltaic Cells from Electrodeposited Precursors , 1998 .

[35]  P. Searson,et al.  Electrochemical deposition of metals onto silicon , 1998 .

[36]  Oumarou Savadogo,et al.  Chemically and electrochemically deposited thin films for solar energy materials , 1998 .

[37]  S. Sanchez,et al.  Electrodeposition of indium selenide in2se3 , 1996 .

[38]  A. Davydov,et al.  Thermodynamic assessment of the Cu-In-Se system and application to thin film photovoltaics , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[39]  Neelkanth G. Dhere,et al.  Thin film photovoltaics , 1996 .

[40]  T. Fujiwara,et al.  The preparation of highly oriented InSe films by electrodeposition , 1996 .

[41]  H. Gasteiger,et al.  Copper electrodeposition on Pt(111) in the presence of chloride and (bi)sulfate: Rotating ring-Pt(111) disk electrode studies , 1995 .

[42]  S. Canegallo,et al.  Mechanism of indium electrodeposition on bismuth cathodes and time evolution of the deposits , 1995 .

[43]  L. Thouin,et al.  Formation of copper indium diselenide by electrodeposition , 1994 .

[44]  L. Thouin,et al.  Electrodeposition of copper-selenium binaries in a citric acid medium , 1993 .

[45]  I. Villegas,et al.  GaAs deposition on the (100) and (110) planes of gold by electrochemical atomic layer epitaxy: A low‐energy electron diffraction, Auger electron spectroscopy, and scanning tunneling microscopy study , 1992 .

[46]  W. Plieth Additives in the electrocrystallization process , 1992 .

[47]  D. Schiffrin,et al.  Electrochemical nucleation from molten salts—I. Diffusion controlled electrodeposition of silver from alkali molten nitrates , 1974 .

[48]  A. Rabenau,et al.  Vapour pressure measurements in the copper-selenium system , 1970 .

[49]  E. Yellin,et al.  The electrodeposition of gallium , 1969 .

[50]  V. Markovac,et al.  Studies of the Electrochemical Kinetics of Indium I . Kinetics of Deposition and Dissolution in the Indium + Indium Sulfate System , 1962 .

[51]  E. M. Sherwood Less Common Metals , 1956 .

[52]  L. Hongxing,et al.  Preparation of Cu(In,Ga)S2 Absorber Layers for Thin Film Solar Cell by Annealing of Electrodeposited Cu-Ga-S Precursor Layers , 2014 .

[53]  Brian R. Perdue,et al.  Formation of CuIn(1-x)GaxSe2 (CIGS) by Electrochemical Atomic Layer Deposition (ALD) , 2014 .

[54]  G. Zangari,et al.  Electrodeposition of Cu-In Alloys as Precursors of Chalcopyrite Absorber Layers , 2014 .

[55]  S. Menezes,et al.  Potential of Electrodeposited Copper Indium Selenide Thin-Films for Various Solar Energy Conversion Devices , 2014 .

[56]  Chi-Woo Lee,et al.  A Mechanism for Origin of Reversible Redox Transitions of Molybdenum/Surface Molybdenum Oxides , 2014 .

[57]  L. Hongxing,et al.  Double Pulse Electrodeposition of Cu-Ga Precursor Layer for CuGaS2 Solar Energy Thin Film , 2013 .

[58]  Chi-Woo Lee,et al.  Reversible Redox Transition and Pseudocapacitance of Molybdenum/Surface Molybdenum Oxides , 2013 .

[59]  N. G. Ferreira,et al.  Electrodeposition of Cu Nanoparticles on BDD Electrodes: Reactions and Nucleation Mechanism , 2012 .

[60]  Zhian Zhang,et al.  Incorporation Mechanism of Indium and Gallium during Electrodeposition of Cu(In,Ga)Se2 Thin Film , 2011 .

[61]  L. Romankiw,et al.  Electrodeposited Gallium Alloy Thin Films Synthesized by Solid State Reactions for CIGS Solar Cell , 2011 .

[62]  K. Asadpour‐Zeynali,et al.  Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode , 2009 .

[63]  T. P. Gujar,et al.  Characterization of Electrochemically Grown Crystalline CuInSe2 Thin Films , 2009 .

[64]  K. Rajeshwar,et al.  A voltammetric study of the electrodeposition chemistry in the Cu+In+Se system , 1989 .