Multifunctional Carbon Nanotube Composite Fibers

Continuous carbon nanotube composite fibers having record energy-to-break (toughness) are reported. These fibers have been employed in the fabrication of lightweight fiber supercapacitors, which can be woven or sewn into fabrics and, therefore, be potentially considered as components for electronic textiles. Moreover, these fibers provided remarkable electromechanical actuator capabilities.

[1]  J. Ferraris,et al.  Continuous carbon nanotube composite fibers: properties, potential applications, and problemsElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b3/b312092a/ , 2004 .

[2]  Joshua D. Kuntz,et al.  Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes , 2003 .

[3]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[4]  Gyu-Tae Kim,et al.  V2O5 nanofibre sheet actuators , 2003, Nature materials.

[5]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[6]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[7]  M. Maugey,et al.  Hierarchical Pore Structure and Wetting Properties of Single-Wall Carbon Nanotube Fibers , 2003 .

[8]  J. Fischer,et al.  Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[9]  P. Poulin,et al.  Improved structure and properties of single-wall carbon nanotube spun fibers , 2002 .

[10]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[11]  P. Poulin,et al.  Films and fibers of oriented single wall nanotubes , 2002 .

[12]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[13]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[14]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[15]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[16]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[17]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[18]  Emmanuel Flahaut,et al.  CARBON NANOTUBE-METAL-OXIDE NANOCOMPOSITES: MICROSTRUCTURE, ELECTRICAL CONDUCTIVITY AND MECHANICAL PROPERTIES , 2000 .

[19]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[20]  A. Chuvilin,et al.  Aligned carbon nanotube films for cold cathode applications , 2000 .

[21]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[22]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[23]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[24]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[25]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[26]  James M. Tour,et al.  Dissolution of small diameter single-wall carbon nanotubes in organic solvents? , 2001 .