UNDI: An open-source library to simulate muon-nuclear interactions in solids

Abstract We present UNDI, an open-source program to analyse the time dependent spin polarization of an isolated muon interacting with the surrounding nuclear magnetic dipoles in the context of standard muon spin rotation and relaxation spectroscopy experiments. The code can perform both exact and approximated estimates of the muon polarization function in presence of external fields and electric field gradients on the nuclei surrounding the muon. We show that this tool, combined to ab initio estimations of the electric field gradient at the nuclei interacting with the muon, can become a valuable complement to supercell based identifications of muon sites in crystals when large nuclear magnetic moments are present in the sample. In addition, it allows to properly investigate physical properties influenced by the presence of a non-negligible electric field gradient such as avoided level crossing resonance, nature of the ground state, disentanglement of electronic and nuclear magnetic moments or charge ordered states. The efficiency and effectiveness of this method is shown along the lines of three realistic examples. Program summary Program Title: UNDI CPC Library link to program files: http://dx.doi.org/10.17632/grp8njy6gz.1 Developer’s respository link: https://github.com/bonfus/undi Code Ocean capsule: https://codeocean.com/capsule/8365303 Licensing provisions: GPLv3 Programming language: Python Nature of problem: To simplify and potentially automate the analysis of the nuclear contribution to muon polarization functions in crystalline materials. Solution method: A python library that provides a set of tools to efficiently solve the spin Hamiltonian describing the interaction between the muon and its neighbouring nuclei. The code provides the time development of the spin polarization of the muon subject to external fields and accounts for quadrupolar interactions at the nuclear sites. The solution is sought at quantum level accuracy and Hilbert spaces with dimension up to one million can be handled, thus providing accurate results for all standard experimental conditions.

[1]  Celio New method to calculate the muon polarization function. , 1986, Physical review letters.

[2]  David M. Grant,et al.  Methods for analyzing spectroscopic line shapes. NMR solid powder patterns , 1986 .

[3]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[4]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[5]  A. Amato,et al.  Understanding the µ SR spectra of MnSi without magnetic polarons , 2014, 1405.0140.

[6]  A. Savici,et al.  Field dependence of the muon spin relaxation rate in MnSi. , 2003, Physical review letters.

[7]  N. Sluchanko,et al.  Magnetic spin resonance in CeB 6 , 2009 .

[8]  M. Sera,et al.  Magnetic field induced 4f octupole in CeB6 probed by resonant x-ray diffraction. , 2009, Physical review letters.

[9]  Keitel,et al.  Observation of muon-fluorine "hydrogen bonding" in ionic crystals. , 1986, Physical review. B, Condensed matter.

[10]  Spin Jahn-Teller antiferromagnetism in CoTi2O5 , 2018, Physical Review B.

[11]  C. Opagiste,et al.  Retrieving CeB6 's lost magnetic entropy , 2019, Physical Review B.

[12]  R. Renzi,et al.  Muon contact hyperfine field in metals: A DFT calculation , 2018, 1803.11099.

[13]  Y. Ishizawa,et al.  NMR Study on the Spin Structure of CeB 6 , 1983 .

[14]  S. Blundell,et al.  Spin diffusion in the low-dimensional molecular quantum Heisenberg antiferromagnet Cu ( pyz ) ( NO 3 ) 2 detected with implanted muons , 2014, 1406.3202.

[15]  Kanetada Nagamine,et al.  Introductory Muon Science , 2003 .

[16]  J. Akimitsu,et al.  Spin dynamics of 4f electrons in CeB6 studied by muon spin relaxation , 2000 .

[17]  S. Blundell,et al.  Magnetic phases of skyrmion-hosting GaV4S8−ySey(y=0,2,4,8) probed with muon spectroscopy , 2018, Physical Review B.

[18]  Yamazaki,et al.  Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation. , 1990, Physical review. B, Condensed matter.

[19]  P. Fischer,et al.  Zero-field magnetic structure in CeB6 reinvestigated by neutron diffraction and muon spin relaxation , 2003 .

[20]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[21]  B. Roessli,et al.  On the Robustness of the MnSi Magnetic Structure Determined by Muon Spin Rotation , 2018, Quantum Beam Science.

[22]  S. Blundell,et al.  Local magnetism, magnetic order and spin freezing in the ‘nonmetallic metal’ FeCrAs , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  P. Jena,et al.  Electric-Field Gradient at Cu Nuclei Due to an Interstitial Positive Muon , 1978 .

[24]  T. Moriya,et al.  Effect of Spin Fluctuations on the Electric Field Gradient in Itinerant Electron Magnets , 1978 .

[25]  J. Igarashi,et al.  Antiferroquadrupole order and magnetic field induced octupole in CeB6 , 2012 .

[26]  A. Alam,et al.  Revealing the Nature of Antiferroquadrupolar Ordering in Cerium Hexaboride: CeB_{6}. , 2018, Physical review letters.

[27]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[28]  S. Blundell,et al.  Quantum magnetism in molecular spin ladders probed with muon-spin spectroscopy , 2018, New Journal of Physics.

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  D. Jochym,et al.  Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS). , 2018, The Journal of chemical physics.

[31]  Y. Ōnuki,et al.  Problems of the magnetic structure of CeB6 , 1995 .

[32]  S. Kunii,et al.  NMR study of a CeB6 single crystal in high magnetic field , 1983 .

[33]  R. Renzi,et al.  Toward the computational prediction of muon sites and interaction parameters , 2016, 1604.03281.

[34]  M. Calandra,et al.  Quantum effects in muon spin spectroscopy within the stochastic self-consistent harmonic approximation , 2019, Physical Review Materials.

[35]  F. Gygax,et al.  Dynamics of positive muons in CaB6 , 2005 .

[36]  R. Sherwood,et al.  NMR and Susceptibility Studies of MnSi above Tc , 1978 .

[37]  A. Gossard,et al.  BORON NUCLEAR MAGNETIC RESONANCE IN RARE EARTH INTERMETALLIC COMPOUNDS , 1962 .

[38]  T. Yamazaki,et al.  Zero-and low-field spin relaxation studied by positive muons , 1979 .

[39]  M. Kennett,et al.  Precision Search for Magnetic Order in the Pseudogap Regime of La2 xSrxCuO4 by Muon Spin Relaxation , 2012, 1201.5406.

[40]  H. Teichler Microscopic calculation of lattice distortions around μ+ in Cu , 1978 .