On the solution of the fuzzy Sylvester matrix equation

In this paper, we consider the fuzzy Sylvester matrix equation $$AX+XB=C,$$ where $$A\in {\mathbb{R}}^{n \times n}$$ and $$B\in {\mathbb{R}}^{m \times m}$$ are crisp M-matrices, C is an $$n\times m$$ fuzzy matrix and X is unknown. We first transform this system to an $$(mn)\times (mn)$$ fuzzy system of linear equations. Then, we investigate the existence and uniqueness of a fuzzy solution to this system. We use the accelerated over-relaxation method to compute an approximate solution to this system. Some numerical experiments are given to illustrate the theoretical results.

[1]  P. Benner FACTORIZED SOLUTION OF SYLVESTER EQUATIONS WITH APPLICATIONS IN CONTROL , 2004 .

[2]  M. S. Hashemi,et al.  SOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX , 2008 .

[3]  Tofigh Allahviranloo,et al.  Numerical methods for fuzzy system of linear equations , 2004, Appl. Math. Comput..

[4]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[7]  Mehdi Dehghan,et al.  Iterative solution of fuzzy linear systems , 2006, Appl. Math. Comput..

[8]  Tofigh Allahviranloo,et al.  Successive over relaxation iterative method for fuzzy system of linear equations , 2005, Appl. Math. Comput..

[9]  B. Zheng,et al.  Block iterative methods for fuzzy linear systems , 2007 .

[10]  Li Wang,et al.  Preconditioned AOR iterative method for linear systems , 2007 .

[11]  Alan J. Laub,et al.  Matrix analysis - for scientists and engineers , 2004 .

[12]  Apostolos Hadjidimos,et al.  Accelerated overrelaxation method , 1978 .

[13]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[14]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[15]  Peter Benner,et al.  Large-Scale Matrix Equations of Special Type , 2022 .

[16]  V. Simoncini,et al.  On the numerical solution ofAX −XB =C , 1996 .

[17]  Abraham Kandel,et al.  Fuzzy linear systems , 1998, Fuzzy Sets Syst..

[18]  Anders Lindquist,et al.  Computational and combinatorial methods in systems theory , 1986 .

[19]  Khalide Jbilou,et al.  Low rank approximate solutions to large Sylvester matrix equations , 2006, Appl. Math. Comput..

[20]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.

[21]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[22]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[23]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.