Enhancing the performance and robustness of the FEAST eigensolver
暂无分享,去创建一个
[1] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[2] Ping Tak Peter Tang,et al. Zolotarev Quadrature Rules and Load Balancing for the FEAST Eigensolver , 2014, SIAM J. Sci. Comput..
[3] Eric Polizzi,et al. Density-Matrix-Based Algorithms for Solving Eingenvalue Problems , 2009 .
[4] E. Polizzi,et al. Non-linear eigensolver-based alternative to traditional SCF methods. , 2012, The Journal of chemical physics.
[5] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[6] Stephanie Kajpust. Variations of the FEAST eigenvalue algorithm , 2014 .
[7] Eric Polizzi,et al. FEAST fundamental framework for electronic structure calculations: Reformulation and solution of the muffin-tin problem , 2011, Comput. Phys. Commun..
[8] Ping Tak Peter Tang,et al. Feast Eigensolver for Non-Hermitian Problems , 2015, SIAM J. Sci. Comput..
[9] Lloyd N. Trefethen,et al. Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic , 2015, SIAM J. Sci. Comput..
[10] Ping Tak Peter Tang,et al. FEAST as Subspace Iteration Accelerated by Approximate Spectral Projection , 2013 .
[11] Edoardo Di Napoli,et al. Efficient estimation of eigenvalue counts in an interval , 2013, Numer. Linear Algebra Appl..
[12] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[13] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[14] Tetsuya Sakurai,et al. A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems , 2014, Appl. Math. Lett..