A Survey of the Quasi-3D Modeling of Wind Turbine Icing

Wind turbine icing has been the subject of intensive research over the past two decades, primarily focusing on applying computational fluid dynamics (CFD) to 2D airfoil simulations for parametric analysis. As a result of blades’ airfoils deformation caused by icing, wind turbines experience a considerable decrease in aerodynamic performance resulting in a substantial loss of productivity. Due to the phenomenon’s complexity and high computational costs, a fully 3D simulation of the entire iced-up rotating turbine becomes infeasible, especially when dealing with several scenarios under various operating and weather conditions. The Quasi-3D steady-state simulation is a practical alternative method to assess power loss resulting from ice accretion on wind turbine blades. To some extent, this approach has been employed in several published studies showing a capability to estimate performance degradation throughout the generation of power curves for both clean and iced wind turbines. In this paper, applying the Quasi-3D simulation method on wind turbine icing was subject to a survey and in-depth analysis based on a comprehensive literature review. The review examines the results of the vast majority of recently published studies that have addressed this approach, summarizing the findings and bringing together research in this area to conclude with clear facts and details that enhance research on the estimation of wind turbine annual power production loss due to icing.

[1]  A. Ilinca,et al.  Turbulence Modeling of Iced Wind Turbine Airfoils , 2022, Energies.

[2]  Xu Bai,et al.  Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions , 2022, China Ocean Engineering.

[3]  A. Pandal-Blanco,et al.  Performance evaluation of an airfoil under ice accretion using CFD simulations , 2022, Journal of Physics: Conference Series.

[4]  A. Guardone,et al.  Numerical simulation of ice accretion on wind turbine blades , 2022 .

[5]  Qiao Sun,et al.  Evaluation of operational strategies on wind turbine power production during short icing events , 2021, Journal of Wind Engineering and Industrial Aerodynamics.

[6]  A. Ilinca,et al.  Review of Wind Turbine Icing Modelling Approaches , 2021, Energies.

[7]  A. Guardone,et al.  Multi-physics Simulations of a Wind Turbine in Icing Conditions , 2021, 9th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering.

[8]  Qiang Wang,et al.  Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model , 2020 .

[9]  M. Kelly,et al.  Boundary-layer transition model for icing simulations of rotating wind turbine blades , 2020, Renewable Energy.

[10]  Taeseong Kim,et al.  Development of an icing simulation code for rotating wind turbines , 2020 .

[11]  R. J. Hearst,et al.  Experimental and Numerical Icing Penalties of an S826 Airfoil at Low Reynolds Numbers , 2020, Aerospace.

[12]  Davide Astolfi,et al.  Editorial on Special Issue “Wind Turbine Power Optimization Technology” , 2020, Energies.

[13]  A P Schaffarczyk,et al.  Introduction to Wind Turbine Aerodynamics , 2014, Green Energy and Technology.

[14]  Xingliang Jiang,et al.  Study of Ice Accretion on Horizontal Axis Wind Turbine Blade Using 2D and 3D Numerical Approach , 2020, IEEE Access.

[15]  I. Tuncer,et al.  Aerodynamic validation studies on the performance analysis of iced wind turbine blades , 2019, Computers & Fluids.

[16]  Sebastian Scher,et al.  Machine Learning-Based Prediction of Icing-Related Wind Power Production Loss , 2019, IEEE Access.

[17]  I. Tuncer,et al.  Predictions of ice formations on wind turbine blades and power production losses due to icing , 2019, Wind Energy.

[18]  M. Cervantes,et al.  Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method , 2019, Journal of Energy Resources Technology.

[19]  Michel Cervantes,et al.  Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades , 2019, Energies.

[20]  Rakesh Mishra,et al.  Inverse design of wind turbine blade sections for operation under icing conditions , 2019, Energy Conversion and Management.

[21]  N. Swytink-Binnema,et al.  Wind turbine blade ice accretion: A correlation with nacelle ice accretion , 2019, Cold Regions Science and Technology.

[22]  Muhammad S. Virk,et al.  Accreted ice mass ratio(k‐factor)for rotating wind turbine blade profile and circular cylinder , 2019, Wind Energy.

[23]  M. Virk,et al.  Review of Icing Effects on Wind Turbine in Cold Regions , 2018 .

[24]  Muhammad S. Virk,et al.  Study of ice accretion along symmetric and asymmetric airfoils , 2018 .

[25]  Xiaocheng Zhu,et al.  Numerical simulation of rime ice on NREL Phase VI blade , 2018, Journal of Wind Engineering and Industrial Aerodynamics.

[26]  Jonghwa Kim,et al.  Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD , 2018 .

[27]  Xingliang Jiang,et al.  3D numerical simulation of aerodynamic performance of iced contaminated wind turbine rotors , 2018 .

[28]  Y. Muzychka,et al.  Effects of blade design on ice accretion for horizontal axis wind turbines , 2018 .

[29]  Yan Li,et al.  Icing distribution of rotating blade of horizontal axis wind turbine based on Quasi-3D numerical simulation , 2018 .

[30]  Michele De Gennaro,et al.  Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies , 2018 .

[31]  Zhengzhi Wang,et al.  Numerical simulation for in-cloud icing of three-dimensional wind turbine blades , 2018, Simul..

[32]  Chenxing Hu,et al.  Wind turbines ice distribution and load response under icing conditions , 2017 .

[33]  A. Ebrahimi Atmospheric icing effects of S816 airfoil on a 600 kW wind turbine's performance , 2017 .

[34]  Zhao Qi-jun,et al.  Numerical Simulations for Ice Accretion on Rotors Using New Three-Dimensional Icing Model , 2017 .

[35]  Qin Hu,et al.  Study on small wind turbine icing and its performance , 2017 .

[36]  Marcelo Reggio,et al.  Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software , 2016 .

[37]  Jan-Olov Aidanpää,et al.  Influence of Icing on the Modal Behavior of Wind Turbine Blades , 2016 .

[38]  Ismail H. Tuncer,et al.  Ice Accretion Prediction on Wind Turbines and Consequent Power Losses , 2016 .

[39]  Chi Jeng Bai,et al.  Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs) , 2016 .

[40]  Pierre Pinson,et al.  Identifying and characterizing the impact of turbine icing on wind farm power generation: Impact of turbine icing on wind farm production , 2016 .

[41]  Neil Davis,et al.  Ice detection on wind turbines using the observed power curve , 2016 .

[42]  L. Battisti Wind Turbines in Cold Climates , 2015 .

[43]  Torgeir Moan,et al.  Wind turbine aerodynamic response under atmospheric icing conditions , 2014 .

[44]  Wagdi G. Habashi,et al.  FENSAP-ICE Simulation of Complex Wind Turbine Icing Events, and Comparison to Observed Performance Data , 2014 .

[45]  Chungen Yin,et al.  Preliminary Modelling Study of Ice Accretion on Wind Turbines , 2014 .

[46]  Hálfdán Ágústsson,et al.  Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations , 2013 .

[47]  G. Baruzzi,et al.  FENSAP-ICE Simulation of Icing on Wind Turbine Blades, Part 2: Ice Protection System Design , 2013 .

[48]  Wagdi G. Habashi,et al.  FENSAP-ICE Simulation of Icing on Wind Turbine Blades, Part 1: Performance Degradation , 2013 .

[49]  Sven Schmitz,et al.  Scaled ice accretion experiments on a rotating wind turbine blade , 2012 .

[50]  K. Yee,et al.  Quantitative analysis of a two-dimensional ice accretion on airfoils , 2012 .

[51]  Per Johan Nicklasson,et al.  Performance losses due to ice accretion for a 5 MW wind turbine , 2012 .

[52]  M. Reggio,et al.  Numerical Study of Flow Around Iced Wind Turbine Airfoil , 2012 .

[53]  Fahed Martini Simulations de l'accumulation de glace sur un cylindre : cas test pour le givrage des éoliennes , 2012 .

[54]  Marco Fossati,et al.  Robust Moving Meshes for the Prediction of Aerodynamic Degradation during In-Flight Icing , 2011 .

[55]  S. Dierer,et al.  Wind turbines in icing conditions: performance and prediction , 2010 .

[56]  W. A. Timmer An overview of NACA 6 -digit airfoil series characteristics with reference to airfoils for large wind turbine blades. , 2009 .

[57]  M. Dimitrova Pertes énergétiques d'une éolienne à partir des formes de glace simulées numériquement , 2009 .

[58]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[59]  Guy Fortin,et al.  Wind Turbine Icing and De-Icing , 2009 .

[60]  Per Johan Nicklasson,et al.  The relationship between chord length and rime icing on wind turbines , 2010 .

[61]  Masoud Farzaneh,et al.  Atmospheric icing of power networks , 2008 .

[62]  A. C. Hansen,et al.  WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised) , 2006 .

[63]  Wagdi G. Habashi,et al.  Development of a Second Generation In-Flight Icing Simulation Code , 2006 .

[64]  Ciro A. Rodríguez,et al.  An Improved BEM Model for the Power Curve Prediction of Stall-regulated Wind Turbines , 2005 .

[65]  G. Fortin Simulation de l'accrétion de glace sur un obstacle bidimensionnel par la méthode des bissectrices et par la modélisation des ruisselets et des gouttes de surface , 2003 .

[66]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .

[67]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[68]  Wagdi G. Habashi,et al.  FENSAP-ICE - A comprehensive 3D simulation system for in-flight icing , 2001 .

[69]  Timo Laakso,et al.  Modelling and Prevention of Ice Accretion on Wind Turbines , 2001 .

[70]  Lasse Makkonen,et al.  Models for the growth of rime, glaze, icicles and wet snow on structures , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  Michael S. Selig,et al.  Wind Turbine Performance Under Icing Conditions , 1998 .

[72]  Brian Berkowitz,et al.  Prediction of ice shapes and their effect on airfoil performance , 1991 .

[73]  R. E. Wilson,et al.  Wind-turbine aerodynamics , 1980 .

[74]  R. Clift,et al.  Motion of entrained particles in gas streams , 1971 .

[75]  Wagdi G. Habashi,et al.  Recent Advances in CFD for In-Flight Icing Simulation , 2022 .