Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth

[1]  J. Gilthorpe,et al.  GLUL Ablation Can Confer Drug Resistance to Cancer Cells via a Malate-Aspartate Shuttle-Mediated Mechanism , 2019, Cancers.

[2]  William P. Katt,et al.  Liver-Type Glutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer , 2019, Cell reports.

[3]  J. Zucman‐Rossi,et al.  Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. , 2019, Cell metabolism.

[4]  A. Oudenaarden,et al.  Long‐term expanding human airway organoids for disease modeling , 2019, The EMBO journal.

[5]  R. V. Dúran,et al.  Glutamine metabolism in cancer therapy , 2018 .

[6]  Marie Evangelista,et al.  Pan-Cancer Metabolic Signature Predicts Co-Dependency on Glutaminase and De Novo Glutathione Synthesis Linked to a High-Mesenchymal Cell State. , 2018, Cell metabolism.

[7]  P. Carmeliet,et al.  Role of glutamine synthetase in angiogenesis beyond glutamine synthesis , 2018, Nature.

[8]  Hideaki Nakamura,et al.  The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype , 2018, BMC Cancer.

[9]  C. Thompson,et al.  Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine , 2017, The EMBO journal.

[10]  R. Perez-soler,et al.  Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer , 2017, Expert opinion on pharmacotherapy.

[11]  M. Beck,et al.  The nuclear pore complex: understanding its function through structural insight , 2016, Nature Reviews Molecular Cell Biology.

[12]  D. Hong,et al.  Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC , 2016, Cell Death & Disease.

[13]  Prahlad T. Ram,et al.  Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. , 2016, Cell metabolism.

[14]  Dustin E. Schones,et al.  Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation , 2016, Nature Cell Biology.

[15]  Chi V. Dang,et al.  From Krebs to clinic: glutamine metabolism to cancer therapy , 2016, Nature Reviews Cancer.

[16]  John M. Asara,et al.  Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth , 2016, Nature Cell Biology.

[17]  J. V. van Deursen,et al.  Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy. , 2016, The Journal of clinical investigation.

[18]  B. Faubert,et al.  Myc induces expression of glutamine synthetase through promoter demethylation , 2015 .

[19]  Eytan Ruppin,et al.  Glutamine Synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma , 2015, Nature Cell Biology.

[20]  Y. Bhutia,et al.  Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. , 2015, Cancer research.

[21]  Yitao Ding,et al.  Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma , 2015, Oncotarget.

[22]  M. Hetzer,et al.  Nuclear pore proteins and the control of genome functions , 2015, Genes & development.

[23]  D. Barford,et al.  Molecular architecture and mechanism of the anaphase-promoting complex , 2014, Nature.

[24]  Ralph J DeBerardinis,et al.  Glutamine and cancer: cell biology, physiology, and clinical opportunities. , 2013, The Journal of clinical investigation.

[25]  M. Welliver,et al.  The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. , 2013, Molecular cell.

[26]  M. G. Koerkamp,et al.  Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy , 2012, Nature Cell Biology.

[27]  K. Thangavelu,et al.  Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism , 2012, Proceedings of the National Academy of Sciences.

[28]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[29]  T. Fan,et al.  The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. , 2012, Cell metabolism.

[30]  S. Moncada,et al.  Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells , 2011, Proceedings of the National Academy of Sciences.

[31]  J. Pines,et al.  Cubism and the cell cycle: the many faces of the APC/C , 2011, Nature Reviews Molecular Cell Biology.

[32]  K. Coombes,et al.  Robust Gene Expression Signature from Formalin-Fixed Paraffin-Embedded Samples Predicts Prognosis of Non–Small-Cell Lung Cancer Patients , 2011, Clinical Cancer Research.

[33]  J. Pines,et al.  Cubism and the cell cycle: the many faces of the APC/C , 2011, Nature Reviews Molecular Cell Biology.

[34]  K. Stoeber,et al.  Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-β-TrCP, sequentially regulate glycolysis during the cell cycle , 2011, Proceedings of the National Academy of Sciences.

[35]  C. Dang,et al.  Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. , 2010, Cancer cell.

[36]  R. Wong,et al.  Characterization of the role of the tumor marker Nup88 in mitosis , 2010, Molecular Cancer.

[37]  S. Moncada,et al.  E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation , 2009, Proceedings of the National Academy of Sciences.

[38]  Jennifer E. Van Eyk,et al.  c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism , 2016 .

[39]  R. Wolthuis,et al.  To cell cycle, swing the APC/C. , 2008, Biochimica et biophysica acta.

[40]  S. Mowbray,et al.  Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. , 2008, Journal of molecular biology.

[41]  Hongtao Yu,et al.  Cdc20: a WD40 activator for a cell cycle degradation machine. , 2007, Molecular cell.

[42]  A. Toutain,et al.  Congenital glutamine deficiency with glutamine synthetase mutations. , 2005, The New England journal of medicine.

[43]  R. Heald,et al.  A Rae1-Containing Ribonucleoprotein Complex Is Required for Mitotic Spindle Assembly , 2005, Cell.

[44]  T. Kanda,et al.  Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells , 1998, Current Biology.